Vertical migration to reach cooler waters is a suitable strategy for some marine organisms to adapt to ocean warming. Here, we calculate that realized vertical isotherm migration rates averaged -6.6 + 18.8 m dec across the global ocean between 1980 and 2015. Throughout this century (2006-2100), surface isotherms are projected to deepen at an increasing rate across the globe, averaging -32.3 m dec under the representative concentration pathway (RCP)8.5 'business as usual' emissions scenario, and -18.7 m dec under the more moderate RCP4.5 scenario. The vertical redistribution required by organisms to follow surface isotherms over this century is three to four orders of magnitude less than the equivalent horizontal redistribution distance. However, the seafloor depth and the depth of the photic layer pose ultimate limits to the vertical migration possible by species. Both limits will be reached by the end of this century across much of the ocean, leading to a rapid global compression of the three-dimensional (3D) habitat of many marine organisms. Phytoplankton diversity may be maintained but displaced toward the base of the photic layer, whereas highly productive benthic habitats, especially corals, will have their suitable 3D habitat rapidly reduced.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41559-019-1058-0DOI Listing

Publication Analysis

Top Keywords

ocean warming
8
three-dimensional habitat
8
habitat marine
8
vertical migration
8
marine organisms
8
surface isotherms
8
photic layer
8
ocean
4
warming compresses
4
compresses three-dimensional
4

Similar Publications

Precession modulates the poleward expansion of atmospheric circulation to the Arctic Ocean.

Nat Commun

January 2025

Centre for Marine Magnetism (CM2, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.

Under sustained global warming, Arctic climate is projected to become more responsive to changes in North Pacific meridional heat transport as a result of teleconnections between low and high latitudes, but the underlying mechanisms remain poorly understood. Here, we reconstruct subarctic humidity changes over the past 400 kyr to investigate the role of low-to-high latitude interactions in regulating Arctic hydroclimate. Our reconstruction is based on precipitation-driven sediment input variations in the Subarctic North Pacific (SANP), which reveal a strong precessional cycle in subarctic humidity under the relatively low eccentricity variations that dominated the past four glacial-interglacial cycles.

View Article and Find Full Text PDF

The fate of the West Antarctic Ice Sheet (WAIS) is the largest cause of uncertainty in long-term sea-level projections. In the last interglacial (LIG) around 125,000 years ago, data suggest that sea level was several metres higher than today, and required a significant contribution from Antarctic ice loss, with WAIS usually implicated. Antarctica and the Southern Ocean were warmer than today, by amounts comparable to those expected by 2100 under moderate to high future warming scenarios.

View Article and Find Full Text PDF

While it is known that warming and rising CO level might interactively affect the long-term adaptation of marine diatoms, the molecular and physiological mechanisms underlying these interactions in the marine diatom Thalassiosira weissflogii on an evolutionary scale remain largely unexplored. In this study, we investigated the changes in metabolic pathways and physiological responses of T. weissflogii under long-term ocean acidification and/or warming conditions (∼3.

View Article and Find Full Text PDF

Ice core measurements reveal dipole-like snow accumulation trends over West Antarctica throughout the 20th century, with an increase of >2000 billion metric tons over the Antarctic Peninsula and Ellsworth Land but a decrease of ~500 billion metric tons over Marie Byrd Land. Although atmospheric teleconnections were frequently revealed, linking variability between tropics and higher latitudes on interannual and decadal timescales, centennial-scale teleconnection is absent from literature. Here, using statistical analysis and numerical experiments, we reveal that changes of tropical oceans throughout the 20th century drive the long-term Antarctic snowfall trend.

View Article and Find Full Text PDF

Cold-temperate and Arctic hard bottom coastal ecosystems are dominated by kelp forests, which have a high biomass production and provide important ecosystem services, but are subject to change due to ocean warming. However, the photophysiological response to increasing temperature of ecologically relevant species, such as Laminaria digitata, might depend on the local thermal environment where the population has developed. Therefore, the effects of temperature on growth rate, biochemical composition, maximum quantum yield, photosynthetic quotient and carbon budget of young cultured sporophytes of Laminaria digitata from the Arctic at Spitsbergen (SPT; cultured at 4, 10 and 16 °C) and from the cold-temperate North Sea island of Helgoland (HLG; cultured at 10, 16 and 22 °C) were comparatively analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!