Interfacial FeC-Cu catalysts toward low-pressure syngas conversion to long-chain alcohols.

Nat Commun

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing, 100871, China.

Published: January 2020

Long-chain alcohols synthesis (LAS, COH) from syngas provides a promising route for the conversion of coal/biomass/natural gas into high-value chemicals. Cu-Fe binary catalysts, with the merits of cost effectiveness and high CO conversion, have attracted considerable attention. Here we report a nano-construct of a FeC-Cu interfacial catalyst derived from CuFeMg-layered double hydroxide (CuFeMg-LDH) precursor, i.e., FeC clusters (~2 nm) are immobilized onto the surface of Cu nanoparticles (~25 nm). The interfacial catalyst exhibits a CO conversion of 53.2%, a selectivity of 14.8 mol% and a space time yield of 0.101 g g h for long-chain alcohols, with a surprisingly benign reaction pressure of 1 MPa. This catalytic performance, to the best of our knowledge, is comparable to the optimal level of Cu-Fe catalysts operated at much higher pressure (normally above 3 MPa).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941981PMC
http://dx.doi.org/10.1038/s41467-019-13691-4DOI Listing

Publication Analysis

Top Keywords

long-chain alcohols
12
interfacial catalyst
8
interfacial fec-cu
4
fec-cu catalysts
4
catalysts low-pressure
4
low-pressure syngas
4
conversion
4
syngas conversion
4
conversion long-chain
4
alcohols long-chain
4

Similar Publications

Structure and metabolic function of spatiotemporal pit mud microbiome.

Environ Microbiome

January 2025

Luzhou Laojiao Co., Ltd., Luzhou, 646000, China.

Background: Pit mud (PM) hosts diverse microbial communities, which serve as a medium to impart flavor and quality to Baijiu and exhibit long-term tolerance to ethanol and acids, resulting in a unique ecosystem. However, the ecology and metabolic functions of PM remain poorly understood, as many taxa in PM represent largely novel lineages. In this study, we used a combination of metagenomic analysis and chemical derivatization LC-MS analysis to provide a comprehensive overview of microbial community structure, metabolic function, phylogeny, horizontal gene transfer, and the relationship with carboxyl compounds in spatiotemporal PM samples.

View Article and Find Full Text PDF

Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, -alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase.

View Article and Find Full Text PDF

Plant sphingolipids are lipophilic membrane components essential for different cellular functions but they also act as signaling molecules in various aspects of plant development. However, the interaction between plant sphingolipids and abscission remains largely uncharacterized. Here, the possible role of sphingolipids in regulating fruit abscission was examined in the abscission zone (AZ) of olive fruit.

View Article and Find Full Text PDF

Background: Chemical derivatization is a common technique in liquid chromatography-mass spectrometry (LC-MS) metabolomics used to improve the ionizability and chromatographic properties of metabolites in complex biological samples. This process facilitates better detection and separation of a wide array of compounds. The reagent 2-(4-boronobenzyl) isoquinolin-2-ium bromide (BBII), developed as a glucose labeling reagent for matrix-assisted laser desorption/ionization MS, enhances ionization for glucose and other hydroxyl metabolites.

View Article and Find Full Text PDF

Phytol is a diterpene from the long-chain unsaturated acyclic alcohols, known for its diverse biological effects, including antimicrobial and anti-inflammatory activities. Present in essential oils, phytol is a promising candidate for various applications in the pharmaceutical and biotechnological sectors. This study aimed to evaluate the antibacterial and drug-potentiating effects of phytol against multidrug-resistant bacteria and to evaluate its properties: ADME and molecular docking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!