A deep-learning technique for phase identification in multiphase inorganic compounds using synthetic XRD powder patterns.

Nat Commun

Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 143-747, Republic of Korea.

Published: January 2020

Here we report a facile, prompt protocol based on deep-learning techniques to sort out intricate phase identification and quantification problems in complex multiphase inorganic compounds. We simulate plausible powder X-ray powder diffraction (XRD) patterns for 170 inorganic compounds in the Sr-Li-Al-O quaternary compositional pool, wherein promising LED phosphors have been recently discovered. Finally, 1,785,405 synthetic XRD patterns are prepared by combinatorically mixing the simulated powder XRD patterns of 170 inorganic compounds. Convolutional neural network (CNN) models are built and eventually trained using this large prepared dataset. The fully trained CNN model promptly and accurately identifies the constituent phases in complex multiphase inorganic compounds. Although the CNN is trained using the simulated XRD data, a test with real experimental XRD data returns an accuracy of nearly 100% for phase identification and 86% for three-step-phase-fraction quantification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941984PMC
http://dx.doi.org/10.1038/s41467-019-13749-3DOI Listing

Publication Analysis

Top Keywords

inorganic compounds
20
phase identification
12
multiphase inorganic
12
xrd patterns
12
synthetic xrd
8
complex multiphase
8
patterns 170
8
170 inorganic
8
xrd data
8
xrd
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!