Purpose: To design a convolutional recurrent neural network (CRNN) that calculates three-dimensional (3D) positions of lung tumors from continuously acquired cone beam computed tomography (CBCT) projections, and facilitates the sorting and reconstruction of 4D-CBCT images.
Method: Under an IRB-approved clinical lung protocol, kilovoltage (kV) projections of the setup CBCT were collected in free-breathing. Concurrently, an electromagnetic signal-guided system recorded motion traces of three transponders implanted in or near the tumor. Convolutional recurrent neural network was designed to utilize a convolutional neural network (CNN) for extracting relevant features of the kV projections around the tumor, followed by a recurrent neural network for analyzing the temporal patterns of the moving features. Convolutional recurrent neural network was trained on the simultaneously collected kV projections and motion traces, subsequently utilized to calculate motion traces solely based on the continuous feed of kV projections. To enhance performance, CRNN was also facilitated by frequent calibrations (e.g., at 10° gantry rotation intervals) derived from cross-correlation-based registrations between kV projections and templates created from the planning 4DCT. Convolutional recurrent neural network was validated on a leave-one-out strategy using data from 11 lung patients, including 5500 kV images. The root-mean-square error between the CRNN and motion traces was calculated to evaluate the localization accuracy.
Result: Three-dimensional displacement around the simulation position shown in the Calypso traces was 3.4 ± 1.7 mm. Using motion traces as ground truth, the 3D localization error of CRNN with calibrations was 1.3 ± 1.4 mm. CRNN had a success rate of 86 ± 8% in determining whether the motion was within a 3D displacement window of 2 mm. The latency was 20 ms when CRNN ran on a high-performance computer cluster.
Conclusions: CRNN is able to provide accurate localization of lung tumors with aid from frequent recalibrations using the conventional cross-correlation-based registration approach, and has the potential to remove reliance on the implanted fiducials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067648 | PMC |
http://dx.doi.org/10.1002/mp.14007 | DOI Listing |
BMC Bioinformatics
January 2025
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China.
In recent years, combined drug screening has played a very important role in modern drug discovery. Generally, synergistic drug combinations are crucial in treatment for many diseases. However, the toxic side effects of drug combinations are probably increased with the increase of drugs numbers, so the accurate prediction of toxic side effects of drug combinations is equally important.
View Article and Find Full Text PDFEur J Hum Genet
January 2025
Institute for Genomic Statistics and Bioinformatics, Bonn, NRW, Germany.
The facial gestalt (overall facial morphology) is a characteristic clinical feature in many genetic disorders that is often essential for suspecting and establishing a specific diagnosis. Therefore, publishing images of individuals affected by pathogenic variants in disease-associated genes has been an important part of scientific communication. Furthermore, medical imaging data is also crucial for teaching and training deep-learning models such as GestaltMatcher.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.
Alzheimer's Disease (AD) significantly aggravates human dignity and quality of life. While newly approved amyloid immunotherapy has been reported, effective AD drugs remain to be identified. Here, we propose a novel AI-driven drug-repurposing method, DeepDrug, to identify a lead combination of approved drugs to treat AD patients.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Karst Georesources and Environment, College of Resources and Environmental Engineering, Guizhou University, Ministry of Education, Guizhou University, Guiyang, 550025, China.
Mine water influx is a significant geological hazard during mine development, influenced by various factors such as geological conditions, hydrology, climate, and mining techniques. This phenomenon is characterized by non-linearity and high complexity, leading to frequent water accidents in coal mines. These accidents not only impact coal production quality but also jeopardize the safety of mine staff.
View Article and Find Full Text PDFSci Rep
January 2025
Renewable Energy Research Group, Isfahan, Iran.
The performance of nanofluids is largely determined by their thermophysical properties. Optimizing these properties can significantly enhance nanofluid performance. This study introduces a hybrid strategy based on computational intelligence to determine the optimal conditions for ternary hybrid nanofluids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!