Optogenetic Control of Airway Cholinergic Neurons .

Am J Respir Cell Mol Biol

Division of Pulmonary and Critical Care Medicine, Department of Medicine and.

Published: April 2020

Dysregulation of airway nerves leads to airway hyperreactivity, a hallmark of asthma. Although changes to nerve density and phenotype have been described in asthma, the relevance of these changes to nerve function has not been investigated due to anatomical limitations where afferent and efferent nerves run in the same nerve trunk, making it difficult to assess their independent contributions. We developed a unique and accessible system to activate specific airway nerves to investigate their function in mouse models of airway disease. We describe a method to specifically activate cholinergic neurons using light, resulting in immediate, measurable increases in airway inflation pressure and decreases in heart rate. Expression of light-activated channelrhodopsin 2 in these neurons is governed by Cre expression under the endogenous choline acetyltransferase promoter, and we describe a method to decrease variability in channelrhodopsin expression in future experiments. Optogenetic activation of specific subsets of airway neurons will be useful for studying the functional relevance of other observed changes, such as changes to nerve morphology and protein expression, across many airway diseases, and may be used to study the function of subpopulations of autonomic neurons in lungs and other organs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7110977PMC
http://dx.doi.org/10.1165/rcmb.2019-0378MADOI Listing

Publication Analysis

Top Keywords

changes nerve
12
airway
8
cholinergic neurons
8
airway nerves
8
describe method
8
neurons
5
optogenetic control
4
control airway
4
airway cholinergic
4
neurons dysregulation
4

Similar Publications

Persistent Postural-Perceptual Dizziness (PPPD) is a common cause of chronic vestibular syndrome. Although previous studies have identified central abnormalities in PPPD, the specific neural circuits and the alterations in brain network topological properties, and their association with dizziness and postural instability in PPPD remain unclear. This study includes 30 PPPD patients and 30 healthy controls.

View Article and Find Full Text PDF

Purpose: To use swept-source optical coherence tomography angiography (SS-OCTA) to investigate the alterations in retinal vascular density (VD) in patients presenting with congenital unilateral trochlear nerve palsy.

Methods: The medical records of patients diagnosed with congenital unilateral trochlear nerve palsy and those of a healthy control group were reviewed retrospectively. Comprehensive ocular examinations and SS-OCTA imaging were conducted.

View Article and Find Full Text PDF

Background: Recent studies suggest that the anterior limb of the internal capsule may be an area of convergence for multiple compulsion loops. In this study, the role of different dopaminergic compulsion loops in the mechanism of obsessive-compulsive disorder (OCD) was investigated by selectively damaging dopaminergic neurons or fibers in the corresponding targets with 6-hydroxydopamine (6-OHDA) and depicting the anatomical map of various compulsion loops located in the anterior limb of the internal capsule.

Methods: A total of 52 male Sprague Dawley (SD) rats were exposed to either saline (1 mL/kg, NS group, n = 6) or quinpirole (QNP, dopamine D2-agonist, 0.

View Article and Find Full Text PDF

Background: Observation, execution, and imitation of target actions based on mirror neuron network (MNN) have become common physiotherapy strategies. Electrical stimulation (ES) is a common intervention to improve muscle strength and motor control in rehabilitation treatments. It is possible to enhance MNN's activation by combining motor execution (ME) and motor imitation (MI) with ES simultaneously.

View Article and Find Full Text PDF

Background: White matter (WM) is a principal component of the human brain, forming the structural basis for neural transmission between cortico-cortical and subcortical structures. The impairment of WM integrity is closely associated with the aging process, manifesting as the reorganization of brain networks based on graph theoretical analysis of complex networks and increased volume of white matter hyperintensities (WMHs) in imaging studies.

Methods: This study investigated changes in the robustness of WM brain networks during aging and assessed their correlation with WMHs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!