Transition-metal sulfides have been considered as promising anode materials for lithium-ion batteries (LIBs) due to their high theoretical specific capacity and superior electrochemical performance. However, the large volume change during the discharge/charge process causes structural pulverization, resulting in rapid capacity decline and the loss of active materials. Herein, we report CoS hollow spheres formed by in situ growth on reduced graphene oxide layers. When evaluated as an anode material for LIBs, it delivers a specific capacity of 969.8 mAh·g with a high Coulombic efficiency of 96.49% after 90 cycles. Furthermore, a high reversible capacity of 527.2 mAh·g after the 107th cycle at a current density of 2.5 A g is still achieved. The results illustrate that in situ growth on the graphene layers can enhance conductivity and restrain volume expansion of cobalt sulfide compared with ex situ growth.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b18931DOI Listing

Publication Analysis

Top Keywords

situ growth
12
cobalt sulfide
8
reduced graphene
8
graphene oxide
8
lithium-ion batteries
8
specific capacity
8
situ-formed hollow
4
hollow cobalt
4
sulfide wrapped
4
wrapped reduced
4

Similar Publications

What if an experiment could combine the power of cycloaddition and cross-coupling with the formation of an aromatic molecule in a single collision? Crossed molecular beam experiments augmented with electronic structure and statistical calculations provided compelling evidence on a novel radical route involving 1,3-butadiynyl (HCCCC; X∑) radicals synthesizing (substituted) arylacetylenes in the gas phase upon reactions with 1,3-butadiene (CHCHCHCH; XA) and 2-methyl-1,3-butadiene (isoprene; CHC(CH)CHCH; XA'). This elegant mechanism merges two previously disconnected concepts of cross-coupling and cycloaddition-aromatization in a single collision event via the formation of two new C(sp)-C(sp) bonds and bending the 180° moiety of the linear 1,3-butadiynyl radical out of the ordinary by 60° to 120°. In addition to its importance to fundamental organic chemistry, this unconventional mechanism links two previously separated routes of gas-phase molecular mass growth processes of polyacetylenes and polycyclic aromatic hydrocarbons (PAHs), respectively, in low-temperature environments such as in cold molecular clouds like the Taurus Molecular Cloud (TMC-1) and in hydrocarbon-rich atmospheres of planets and their moons such as Titan, which revises the established understanding of low-temperature molecular mass growth processes in the Universe.

View Article and Find Full Text PDF

A signaling molecule from intratumor bacteria promotes trastuzumab resistance in breast cancer cells.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Molecular Nanostructure and Nanotechnology, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Emerging evidence indicates that intratumor bacteria exist as an active and specific tumor component in many tumor types beyond digestive and respiratory tumors. However, the biological impact and responsible molecules of such local bacteria-tumor direct interaction on cancer therapeutic response remain poorly understood. Trastuzumab is among the most commonly used drugs targeting the receptor tyrosine-protein kinase erbB-2 (ErbB2) in breast cancer, but its resistance is inevitable, severely limiting its clinical effectiveness.

View Article and Find Full Text PDF

Hydrate-based carbon capture and storage (HBCS) is a sustainable and promising approach to combating global warming by utilizing water, which is a ubiquitous resource. Here, we report a comprehensive study of CO hydrate formation in dry water (DW), a water-in-air dispersion confined in silica particles, for improving the kinetics of hydrate growth. Utilizing a combination of a home-built high-pressure reactor, in situ Raman spectroscopy, and powder X-ray diffraction (PXRD), we elucidate the crystal structure, growth dynamics, and morphology of CO hydrates formed in DW, with and without the kinetic hydrate promoter, l-tryptophan.

View Article and Find Full Text PDF

Phosphorous-containing materials are used in a wide array of fields, from energy conversion and storage to heterogeneous catalysis and biomaterials. Among these materials, organic-inorganic metal phosphonate solids and thin films present an interesting option, due to their remarkable thermal and chemical stability. Yet, the synthesis of phosphonate hybrids by vapour phase thin film deposition techniques remains largely unexplored.

View Article and Find Full Text PDF

Potassium metal batteries are emerging as a promising high-energy density storage solution, valued for their cost-effectiveness and low electrochemical potential. However, understanding the role of potassiphilic sites in nucleation and growth remains challenging. This study introduces a single-atom iron, coordinated by nitrogen atoms in a 3D hierarchical porous carbon fiber (Fe─N-PCF), which enhances ion and electron transport, improves nucleation and diffusion kinetics, and reduces energy barriers for potassium deposition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!