A mycorrhiza-specific H -ATPase is essential for arbuscule development and symbiotic phosphate and nitrogen uptake.

Plant Cell Environ

State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.

Published: April 2020

Most land plants can form symbiosis with arbuscular mycorrhizal (AM) fungi to enhance uptake of mineral nutrients, particularly phosphate (Pi) and nitrogen (N), from the soil. It is established that transport of Pi from interfacial apoplast into plant cells depends on the H gradient generated by the H -ATPase located on the periarbuscular membrane (PAM); however, little evidence regarding the potential link between mycorrhizal N transport and H -ATPase activity is available to date. Here, we report that a PAM-localized tomato H -ATPase, SlHA8, is indispensable for arbuscule development and mycorrhizal P and N uptake. Knockout of SlHA8 resulted in truncated arbuscule morphology, reduced shoot P and N accumulation, and decreased H -ATPase activity and acidification of apoplastic spaces in arbusculated cells. Overexpression of SlHA8 in tomato promoted both P and N uptake, and increased total colonization level, but did not affect arbuscule morphology. Heterogeneous expression of SlHA8 in the rice osha1 mutant could fully complement its defects in arbuscule development and mycorrhizal P and N uptake. Our results propose a pivotal role of the SlHA8 in energizing both the symbiotic P and N transport, and highlight the evolutionary conservation of the AM-specific H -ATPase orthologs in maintaining AM symbiosis across different mycorrhizal plant species.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.13714DOI Listing

Publication Analysis

Top Keywords

arbuscule development
12
phosphate nitrogen
8
-atpase activity
8
development mycorrhizal
8
mycorrhizal uptake
8
arbuscule morphology
8
arbuscule
5
uptake
5
mycorrhizal
5
-atpase
5

Similar Publications

Arbuscular mycorrhiza (AM) represents a symbiotic mutualistic association between most land plants and fungi. AM fungi develops specialized intraradical and highly branched structures, called arbuscules, where bidirectional exchange of nutrients between plant and fungi partners occurs, improving plant growth and fitness. Transcriptional reprogramming and hormonal regulation are necessary for the formation of the arbuscules.

View Article and Find Full Text PDF

Rhizophagus irregularis regulates RiCPSI and RiCARI expression to influence plant drought tolerance.

Plant Physiol

December 2024

State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.

Arbuscular mycorrhizal fungi (AMF) can transfer inorganic nitrogen (N) from the soil to host plants to cope with drought stress, with arginine synthesis and NH4+ transport being pivotal processes. However, the regulatory mechanism underlying these processes remains unclear. Here, we found that drought stress upregulated expression of genes involved in the N transfer pathway and putrescine and glutathione synthesis in the mycorrhizal structures of Rhizophagus irregularis within alfalfa (Medicago sativa) roots, i.

View Article and Find Full Text PDF

A conserved nuclear factor YC subunit, NF-YC3, is essential for arbuscule development.

Plant J

December 2024

State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.

Establishing reciprocal symbiosis with arbuscular mycorrhizal (AM) fungi is an important evolutionary strategy of most terrestrial plants to adapt to environmental stresses, especially phosphate (Pi) deficiencies. Identifying the key genes essential for AM symbiosis in plants and dissecting their functional mechanisms will be helpful for the breeding of new crop varieties with enhanced nutrient uptake efficiency. Here, we report a nuclear factor YC subunit-encoding gene, OsNF-YC3, whose expression is specifically induced in arbuscule-containing cells, plays an essential role in AM symbiosis.

View Article and Find Full Text PDF

This study investigates non-rhizobial endophytic bacteria in the root nodules of chickpea (Cicer arietinum L), faba bean (Vicia faba), and cowpea (Vigna unguiculata L. Walp), as well as arbuscular mycorrhizal fungi in the rhizospheric soil of chickpea and faba bean. Out of the 34 endophytic bacterial populations examined, 31 strains were identified as non-rhizobial based on nodulation tests.

View Article and Find Full Text PDF

A Mycorrhiza-Induced UDP-Glucosyl Transferase Negatively Regulates the Arbuscular Mycorrhizal Symbiosis.

Plant Cell Environ

February 2025

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.

Most terrestrial plants can establish a reciprocal symbiosis with arbuscular mycorrhizal (AM) fungi to cope with adverse environmental stresses. The development of AM symbiosis is energetically costly and needs to be dynamically controlled by plants to maintain the association at mutual beneficial levels. Multiple components involved in the autoregulation of mycorrhiza (AOM) have been recently identified from several plant species; however, the mechanisms underlying the feedback regulation of AM symbiosis remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!