Accurately classifying colorectal polyps, or differentiating malignant from benign ones, has a significant clinical impact on early detection and identifying optimal treatment of colorectal cancer. Convolution neural network (CNN) has shown great potential in recognizing different objects (e.g. human faces) from multiple slice (or color) images, a task similar to the polyp differentiation, given a large learning database. This study explores the potential of CNN learning from multiple slice (or feature) images to differentiate malignant from benign polyps from a relatively small database with pathological ground truth, including 32 malignant and 31 benign polyps represented by volumetric computed tomographic (CT) images. The feature image in this investigation is the gray-level co-occurrence matrix (GLCM). For each volumetric polyp, there are 13 GLCMs, computed from each of the 13 directions through the polyp volume. For comparison purpose, the CNN learning is also applied to the multi-slice CT images of the volumetric polyps. The comparison study is further extended to include Random Forest (RF) classification of the Haralick texture features (derived from the GLCMs). From the relatively small database, this study achieved scores of 0.91/0.93 (two-fold/leave-one-out evaluations) AUC (area under curve of the receiver operating characteristics) by using the CNN on the GLCMs, while the RF reached 0.84/0.86 AUC on the Haralick features and the CNN rendered 0.79/0.80 AUC on the multiple-slice CT images. The presented CNN learning from the GLCMs can relieve the challenge associated with relatively small database, improve the classification performance over the CNN on the raw CT images and the RF on the Haralick features, and have the potential to perform the clinical task of differentiating malignant from benign polyps with pathological ground truth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7269812PMC
http://dx.doi.org/10.1109/TMI.2019.2963177DOI Listing

Publication Analysis

Top Keywords

malignant benign
16
cnn learning
12
benign polyps
12
small database
12
gray-level co-occurrence
8
cnn
8
differentiating malignant
8
multiple slice
8
database study
8
pathological ground
8

Similar Publications

Background: Gastrointestinal subepithelial lesions (SELs) range from benign to malignant. Endoscopic ultrasound (EUS)-guided fine-needle biopsy (EUS-FNB) is used widely for pathological diagnosis of SELs. Early diagnosis and treatment are important because all Gastrointestinal stromal tumors (GISTs) have some degree of malignant potential.

View Article and Find Full Text PDF

Objective: This study explored the value of stomach ultrasound reporting and data system (Su-RADS) and two-dimensional shear wave elastography (2D-SWE) in the diagnosis of benign and malignant lesions of the gastric wall, evaluating the feasibility of combining the two methods for the diagnosis of gastric wall lesions.

Methods: 113 patients with gastric wall lesions were examined after oral gastric ultrasound contrast agent, and the grades of the gastric wall lesions were classified according to Su-RADS. Moreover, 2D-SWE was performed to measure the E value of the lesions.

View Article and Find Full Text PDF

Three-dimensional digital model of the facial nerve assisted in the excision of benign parotid tumors based on 3D-DESS-WE-MRI.

Sci Rep

December 2024

Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, #7 Wei Wu Road, Zhengzhou, 450003, Henan, China.

This study proposes a novel surgical technique for the excision of benign parotid tumors, utilizing a extracapsular dissection guided by a three dimensional digital model of the facial nerve(3DFN-ECD) and compares its clinical efficacy with the extracapsular dissection (ECD) method. This prospective study included 68 patients with benign parotid tumors. The control group (40 patients) received the ECD treatment, while the experimental group (28 patients), underwent the 3DFN-ECD approach proposed in this study.

View Article and Find Full Text PDF

Development of an accurate breast cancer detection classifier based on platelet RNA.

Sci Rep

December 2024

School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China.

Platelets possess cancer-induced reprogramming properties, thereby contributing to RNA profile alterations and further cancer progression, while the former is considered a promising biosource for cancer detection. Hence, tumor-educated platelets (TEP) are considered a prospective novel method for early breast cancer (BC) screening. Our study integrated the data from 276 patients with untreated BC, 95 with benign disease controls, 214 healthy controls, and 2 who underwent mastectomy in Chinese and European cohorts to develop a 10-biomarker diagnostic model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!