Chemical and physical reinforcement of hydrophilic gelatin film with di-aldehyde nanocellulose.

Int J Biol Macromol

Department of Polymer Science and Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea. Electronic address:

Published: March 2020

Gelatin is a representative hydrophilic protein material with remarkable biocompatibility and biodegradability. From the aspect of materials processing, gelatin also has the advantage that its entire fabrication process can be performed in an aqueous solution. However, practical application of various gelatin materials-in particular gelatin films-has thus far been limited because of their weak mechanical properties and vulnerability under aqueous environments. To overcome these disadvantages, both physical reinforcement approaches and chemical cross-linking agents have been tested. However, little research has been done to make these two roles work at the same time. In this study, cellulose nanocrystals containing aldehyde groups were prepared via a periodate oxidation process and used for cross-linkable reinforcement of gelatin-based bio-composite films. The results revealed that the di-aldehyde cellulose nanocrystal (D-CNC) could react and covalently cross-link with the amine group of the gelatin molecules via Schiff base formation and compared with neat CNC. The gelatin bio-composite film reinforced with the prepared D-CNC exhibited excellent tensile properties and water resistance, and its mechanical and hydrophilic properties could be easily controlled by adjusting the D-CNC content and was greater than addition of same amount in CNC. Therefore, D-CNC will facilitate the widespread use of existing water-soluble polymers, especially natural hydrophilic proteins and can be used in conventional application fields such as the food, pharmaceutical, and biomedical industries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.12.254DOI Listing

Publication Analysis

Top Keywords

physical reinforcement
8
gelatin
7
chemical physical
4
hydrophilic
4
reinforcement hydrophilic
4
hydrophilic gelatin
4
gelatin film
4
film di-aldehyde
4
di-aldehyde nanocellulose
4
nanocellulose gelatin
4

Similar Publications

Foot trajectory as a key factor for diverse gait patterns in quadruped robot locomotion.

Sci Rep

January 2025

Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan.

Four-legged robots are becoming increasingly pivotal in navigating challenging environments, such as construction sites and disaster zones. While substantial progress in robotic mobility has been achieved using reinforcement learning techniques, quadruped animals exhibit superior agility by employing fundamentally different strategies. Bio-inspired controllers have been developed to replicate and understand biological locomotion strategies.

View Article and Find Full Text PDF

Virtual reality (VR) provides a unique opportunity to simulate various environments, enabling the observation of human behavior in a manner that closely resembles real-world scenarios. This study aimed to explore the effects of anticipating reward or punishment, personality traits, and physiological arousal on risky decision-making within a VR context. A custom VR game was developed to simulate real-life experiences.

View Article and Find Full Text PDF

Purpose: Initiation of early palliative care (PC) is vital in order to assure that the physical, psychological, spiritual, and social needs of patients and their families are addressed before, during, and after treatment for a serious illness. According to the World Health Organization, PC is patient-and family-centered care that optimizes quality of life by anticipating, preventing, and treating suffering. It is holistic care that addresses the physical, psychosocial, and spiritual needs of patients and their families.

View Article and Find Full Text PDF

The use of composite materials, whether metallic or non-metallic, is becoming more popular nowadays because of some of their superior characteristics compared to the use of wood and metallic materials alone. From this perspective, a new natural fiber reinforced composite by varying the fiber orientation was developed in this study using coir and pineapple leaf fiber. This work uses the Taguchi method to investigate the different effects of control factors on mechanical and physical characteristics of the fabricated natural fiber-based composites.

View Article and Find Full Text PDF

Parametric finite element modeling of reinforced polymeric leaflets for improved durability.

J Mech Behav Biomed Mater

January 2025

School of Materials Science and Engineering, Colorado State University, 700 Meridian Ave, Fort Collins, 80523, CO, USA. Electronic address:

Hyaluronic acid-enhanced polyethylene polymeric TAVR shows excellent in vivo anti-calcific, anti-thrombotic, and in vitro hydrodynamic performance. However, during durability testing, impact wear and fatigue cause early valve failure. Heart valve durability can be improved by strengthening the leaflet with fiber reinforcement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!