Following vaccinia vaccination, vesicle formation at the site occurs in 95% of primary vaccinees and is thought to indicate virus replication and vaccine efficacy. Little is known about virus replication and immune response in those who do not develop a vesicle. We used PCR to detect vaccinia in various sites following receipt of the smallpox vaccine in those with and without vesicle formation. Among 80 participants, 74 developed and 6 failed to develop a vesicle. Vaccinia DNA was detected in the blood, in the oropharynx, on the dressing, and on the hands of 5%, 11%, 4%, and 0% of those with vesicle formation and of 33%, 17%, 0%, and 17% of those without vesicle formation, respectively (p > 0.05 for each site). The detection of systemic vaccinia DNA in vaccinees without vesicle formation challenges the current understanding that lack of vesicle formation indicates lack of virus replication, the prerequisite to immune response.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2019.12.046DOI Listing

Publication Analysis

Top Keywords

vesicle formation
24
virus replication
12
vesicle
8
immune response
8
develop vesicle
8
vaccinia dna
8
formation
6
evidence vaccinia
4
vaccinia dissemination
4
dissemination despite
4

Similar Publications

Background: Exosomes are nanoscale vesicles derived from various cell types and tissues that have many potential applications, generating great interest from researchers. One particularly intriguing application of exosomes is their use as a direct therapeutic for aesthetic indications. Several studies and case reports have explored the impact of exosomes for numerous cosmetic concerns but a consensus on the outcomes of these studies has not been established.

View Article and Find Full Text PDF

Bone homeostasis encompasses two interrelated aspects: bone remodeling and cartilage metabolism. Disruption of bone homeostasis can lead to the development of metabolic bone diseases such as osteoporosis and osteoarthritis. The maintenance of bone homeostasis is a complex process that does not solely rely on the functions of the bone tissue itself.

View Article and Find Full Text PDF

Excess lipid droplet (LD) accumulation is associated with several pathological states, including Alzheimer's disease (AD). However, the mechanism(s) by which changes in LD composition and dynamics contribute to pathophysiology of these disorders remains unclear. Apolipoprotein E (ApoE) is a droplet associated protein with a common risk variant (E4) that confers the largest increase in genetic risk for late-onset AD.

View Article and Find Full Text PDF

Background: There has been limited success of cancer immunotherapies in the treatment of ovarian cancer (OvCa) to date, largely due to the immunosuppressive tumour microenvironment (TME). Tumour-associated macrophages (TAMs) are a major component of both the primary tumour and malignant ascites, promoting tumour growth, angiogenesis, metastasis, chemotherapy resistance and immunosuppression. Differential microRNA (miRNA) profiles have been implicated in the plasticity of TAMs.

View Article and Find Full Text PDF

Mesenchymal stem cell therapy as a game-changer in liver diseases: review of current clinical trials.

Stem Cell Res Ther

January 2025

School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 10F., Teaching & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., Zhonghe Dist., Taipei, 235, Taiwan.

Chronic liver diseases, including cirrhosis and liver failure, remain formidable challenges due to their complex progression and limited therapeutic options. Mesenchymal stem cell (MSC) therapy has emerged as a game-changing approach, leveraging its potent immunomodulatory, anti-fibrotic, and regenerative capabilities, along with the ability to transdifferentiate into hepatocytes. This review delves into the latest advances in MSC-based treatments for chronic and end-stage liver diseases, as highlighted in current clinical trials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!