Effect of cortical bone micro-structure in fragility fracture patients on lamellar stress.

J Biomech

Department of Radiological Sciences, Department of Biomedical Engineering, and Department of Mechanical and Aerospace Engineering, University of California, Irvine, United States. Electronic address:

Published: February 2020

This work investigates how changes in cortical bone microstructure alter the risk of fragility fractures. The secondary osteons of non-osteoporotic (by DXA) women with fragility fractures have reduced lamellar width and greater areas of birefringent brightness in transverse sections, a pathological condition. We used hierarchical finite element (FE) models of the proximal femur of two women aged 67 and 88 (younger and older) during one-legged stance. At specific locations of the anterior-inferior neck (ROI), we analyzed micro-models containing osteons comprised of alternating birefringent extinct and bright lamellae. The plane of lamellar isotropy (XY) was transverse to the osteon longitudinal axis (Z) which was parallel to the femoral neck axis. To evaluate changes in fracture risk with changes in microstructure, we investigated principal and von Mises stresses, and planar stress measures that accounted for transverse isotropy. For both younger and older femurs, 48% to 100% of stress measures were larger in models with healthy architecture than in models with pathological architecture, while controlling for type of lamella and osteon. These findings suggest that bone adaptation reduces stress at most pathological lamellar sites. However, in the bright lamellae of the younger femur, the pathological tensile, compressive and distortional stresses in the transverse plane and distortional stress in the longitudinal planes were larger than the non-negligible corresponding stresses in 6 of the 28 osteon models with healthy architecture, in 5 of the 7 locations. Therefore, a minority of sites with pathological architecture present greater stress, and therefore, greater fracture risk.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2019.109596DOI Listing

Publication Analysis

Top Keywords

cortical bone
8
fragility fractures
8
younger older
8
bright lamellae
8
fracture risk
8
stress measures
8
models healthy
8
healthy architecture
8
pathological architecture
8
stress
6

Similar Publications

Purpose: Primary anterior cruciate ligament (ACL) reconstruction graft failure remains a significant health concern in young patients. Despite the high incidence of poor graft integration in these patients and the resulting high failure rate, little consideration has been given to the quality of the bone into which the graft is anchored at reconstruction. Therefore, we investigated post ACL injury mineralized tissue changes in the ACL femoral entheses of young males and compared them to changes previously reported for young females.

View Article and Find Full Text PDF

The deltoid ligament (medial collateral ligament) and the syndesmosis (a composite ligamentous structure at the distal tibiofibular junction) are critical for maintaining ankle stability. In cases of high-energy ankle fractures, these structures are often injured simultaneously, leading to instability and potential long-term complications such as post-traumatic arthritis. This review aims to explore advancements in minimally invasive techniques for the treatment of combined deltoid ligament and syndesmosis injuries, with a focus on optimizing surgical outcomes and reducing patient morbidity.

View Article and Find Full Text PDF

Sport participation affects body composition and bone health, but the association between sport, body composition, and bone health in female athletes is complex. We compared areal bone mineral density (aBMD, DXA) and tibial volumetric bone mineral density (vBMD), geometry, microarchitecture, and estimated strength (HR-pQCT) in cross-country runners (n = 22), gymnasts (n = 23) and lacrosse players (n = 35), and investigated associations of total body lean mass (TBLM), team, and their interaction with tibial bone outcomes. Total body (TB), total hip (TH), femoral neck (FN), and lumbar spine (LS) aBMD were higher in gymnasts than runners (p < 0.

View Article and Find Full Text PDF

Tumor necrosis factor-α (TNF-α) induces a multitude of actions and consequences in bone and cartilage resorption and immune response augmentation. In this research, we aimed to investigate the effects of TNF-α on osteogenesis parameters in newborn mice. Experimental research was conducted on 42 pregnant mice, dividing into seven groups as follows: control (no injection), vehicle 1 (PBS injection on 7-9th pregnancy days (PD)), vehicle 2 (PBS injection during pregnancy), experimental 1 (injection of 10 ng/kg of TNF-α on 7-9th PD), experimental 2 (injection of 100 ng/kg of TNF-α on 7-9th PD), experimental 3 (injection of 10 ng/kg of TNF-α during pregnancy) and experimental 4 (injection of 100 ng/kg of TNF-α during pregnancy).

View Article and Find Full Text PDF

Background Odontogenic maxillary sinusitis arises mainly from dental origins, emphasizing the connection between dental health and sinus issues. Understanding these relationships is crucial for implant planning, sinus augmentation procedures, and managing post-extraction complications. This knowledge can help clinicians make informed decisions about treatment timing and approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!