Use of a plasma-polymerized (pp) layer under a polyurethane (PU) coating on aluminum dramatically improves the corrosion resistance. Compared to conventional polymer coatings, pp coatings are highly cross-linked, have better adhesion to substrates, and result in lower emission of volatile organic contents. Although past research has focused on the properties of comparatively thick pp films and on the use of pp films alone to protect metals, we consider here very thin pp coatings as a primer layer to improve corrosion resistance. Electrochemical impedance spectroscopy combined with salt spray lab tests show that the corrosion resistance of a PU coating on top of a pp coating from hexamethyldisiloxane (HMDSO) is much better than that of a PU coating directly on Al 3003. The relatively poor pull-off adhesion between PU and pp-HMDSO is readily addressed using a gradient coating by depositing a pp maleic anhydride layer over the pp-HMDSO coating or by modifying the surface composition of the pp-HMDSO coating with N plasma. X-ray photon spectroscopy analysis of the failure interface from pull-off tests makes clear that failure does not occur at the interface between the pp coating and the metal substrate. Field tests show the performance of the coating system with PU on a gradient coating on Al 3003 to be superior to that of a coating system of PU on chromate-treated Al 3003.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.9b02589 | DOI Listing |
Sci Rep
December 2024
Corrosion and Surface Engineering CSIR, National Metallurgical Laboratory, Jamshedpur, India.
Chloride-induced corrosion of steel rebars embedded in mortar was effectively controlled by blending of gallic acid in wet mixture. Mixing of optimized concentration of gallic acid (GA) inhibitor (0.125%) in mortars considerably increased the charge transfer resistance of embedded rebars (80.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
School of Metallurgy and Environment, Central South University, Changsha 410083, China; Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha 410083, China; National Energy Metal Resources and New Materials Key Laboratory, Central South University, Changsha 410083, China. Electronic address:
The dendrite and corrosion issues still remain for zinc anodes. Interface modification of anodes has been widely used for stabilizing zinc anodes. However, it is still quite challenging for such modification to simultaneously suppress zinc dendrites and corrosion issues.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China.
Currently, the main limitations of Pd-coated Nb-TiFe dual-phase alloys include insufficient hydrogen permeability, susceptibility to hydrogen embrittlement (HE), and poor tolerance of HS poisoning. To address these issues, this study proposes a series of improvements. First, a novel NbTiFe alloy composed of a well-aligned Nb-TiFe eutectic was successfully prepared using directional solidification (DS) technology.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China.
The corrosion resistance of nickel-titanium nitride (Ni/TiN) composites is significantly influenced by the operation parameters during the jet pulse electrodeposition (JPE) process. The effect of current density, jet rate, TiN concentration, and duty cycle impact on the anti-corrosion property of Ni/TiN composites were investigated and optimized using the response surface method (RSM). After the optimization of the operation parameters, the corrosion current of Ni/TiN composites decreased from 9.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Intelligent Manufacturing, Luoyang Institute of Science and Technology, Luoyang 471023, China.
(AlCrMoNiTi)N high-entropy alloy nitride (HEAN) films were synthesized at various bias voltages using the co-filter cathodic vacuum arc (co-FCVA) deposition technique. This study systematically investigates the effect of bias voltage on the microstructure and performance of HEAN films. The results indicate that an increase in bias voltage enhances the energy of ions while concomitantly reducing the deposition rate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!