Hermansky-Pudlak syndrome (HPS) is a group of 10 autosomal recessive multisystem disorders, each defined by the deficiency of a specific gene. HPS-associated genes encode components of four ubiquitously expressed protein complexes: Adaptor protein-3 (AP-3) and biogenesis of lysosome-related organelles complex-1 (BLOC-1) through -3. All individuals with HPS exhibit albinism and a bleeding diathesis; additional features occur depending on the defective protein complex. Pulmonary fibrosis is associated with AP-3 and BLOC-3 deficiency, immunodeficiency with AP-3 defects, and gastrointestinal symptoms are more prevalent and severe in BLOC-3 deficiency. Therefore, identification of the HPS subtype is valuable for prognosis, clinical management, and treatment options. The prevalence of HPS is estimated at 1-9 per 1,000,000. Here we summarize 264 reported and novel variants in 10 HPS genes and estimate that ~333 Puerto Rican HPS subjects and ~385 with other ethnicities are reported to date. We provide pathogenicity predictions for missense and splice site variants and list variants with high minor allele frequencies. Current cellular and clinical aspects of HPS are also summarized. This review can serve as a manifest for molecular diagnostics and genetic counseling aspects of HPS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8175076 | PMC |
http://dx.doi.org/10.1002/humu.23968 | DOI Listing |
Am J Respir Crit Care Med
January 2025
AstraZeneca, BioPharmaceuticals R&D, Gaithersburg, Maryland, United States.
Immunol Res
January 2025
Laboratory of Clinical Immunology, Infectiology, and Autoimmunity (LICIA), Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco.
Congenital neutropenia (CoN) is a heterogeneous group of inborn errors of immunity (IEI) characterized by recurrent infections and early onset of neutropenia (NP). This study aimed to investigate the demographic and clinical data of children with CoN and idiopathic neutropenia (IN) in Morocco. We performed a retrospective study of patients with CoN and analyzed the clinical and laboratory findings of patients with CoN and IN diagnosed between 1999 and 2018 in a clinical immunology unit of a large pediatric hospital.
View Article and Find Full Text PDFCureus
December 2024
Department of Pathology, Ranga Raya Medical College, Kakinada, IND.
Chediak-Higashi syndrome (CHS) is a rare multisystem genetic disorder of childhood, caused by a defect in vesicular trafficking, which is an essential process for intracellular transport. This defect results in the formation of giant cytoplasmic granules in various cell types, including white blood cells, melanosomes, and Schwann cells. The presence of giant lysosomal granules in neutrophils and their precursors is a distinct and diagnostic feature of CHS, differentiating it from other childhood immunodeficiency disorders, such as Griscelli syndrome and Hermansky-Pudlak syndrome, which share common characteristics like albinism and increased susceptibility to fatal hemophagocytic lymphohistiocytosis.
View Article and Find Full Text PDFFEBS Lett
December 2024
Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRI, National Institutes of Health, Bethesda, MD, USA.
Hermansky-Pudlak syndrome type 1 (HPS-1) is a rare, autosomal recessive disorder caused by defects in the biogenesis of lysosome-related organelles complex-3 (BLOC-3). Impaired kidney function is among its clinical manifestations. To investigate HPS-1 renal involvement, we employed 1D-gel-LC-MS/MS and compared the protein composition of urinary extracellular vesicles (uEVs) from HPS-1 patients to normal control individuals.
View Article and Find Full Text PDFJCI Insight
December 2024
Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, United States of America.
Hermansky-Pudlak syndrome (HPS) is a genetic disorder of endosomal protein trafficking associated with pulmonary fibrosis in specific subtypes, including HPS-1 and HPS-2. Single mutant HPS1 and HPS2 mice display increased fibrotic sensitivity while double mutant HPS1/2 mice exhibit spontaneous fibrosis with aging, which has been attributed to HPS mutations in alveolar epithelial type II (AT2) cells. We utilized HPS mouse models and human lung tissue to investigate mechanisms of AT2 cell dysfunction driving fibrotic remodeling in HPS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!