The Role of Biochar in Reducing the Bioavailability and Migration of Persistent Organic Pollutants in Soil-Plant Systems: A Review.

Bull Environ Contam Toxicol

Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China.

Published: February 2020

The amendment of biochar in soils contaminated with persistent organic pollutants (POPs) is an environmentally friendly in situ remediation measure. Numerous studies focused on the application of biochars to reduce the uptake of POPs by plants in soils. In this review, we summarized the role of biochar in reducing the migration of POPs in soil-plant systems. The mechanisms of biochar reducing the bioavailability of POPs in the soil, i.e. immobilization and promoted biodegradation, and the influencing factors are fully discussed. Especially in rhizosphere amended with biochar, the synergistic effect of POPs-root exudates-microorganisms on the reduced bioavailability of POPs is analyzed. This paper suggests that future researches should focus on the long-term environmental fate of POPs sorbed on high-temperature biochars and the long-term impacts of low-temperature biochars on the interaction of POPs-root exudates-rhizosphere microorganisms. All the above are necessary for efficient and safe use of biochar for remediating POP-contaminated farmland soils.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00128-019-02779-8DOI Listing

Publication Analysis

Top Keywords

biochar reducing
12
role biochar
8
reducing bioavailability
8
persistent organic
8
organic pollutants
8
soil-plant systems
8
bioavailability pops
8
pops
6
biochar
5
bioavailability migration
4

Similar Publications

Manganese-modified reed biochar decreased nutrients and methane release from algae debris-contaminated sediments.

Environ Res

January 2025

Jiangsu Water Conservancy Construction Engineering co.,ltd, Yangzhou, P. R. China.

Biochar is one of the ways for carbon storage, pollution control and biosolid reuse. Aquatic plant reeds are widely used in nutrient removal in wetlands and have huge biomass. Nonetheless, little is known regarding the effects of reed-based biochar on sediments.

View Article and Find Full Text PDF

An efficient fungi-biochar-based system for advancing sustainable management of combined pollution.

Environ Pollut

January 2025

Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China. Electronic address:

Heavy metal (HM) contamination poses significant global environmental threats, impacting ecosystems, public health, and sustainable development. Fungi, as eco-friendly alternatives to chemical treatments, have the potential to reduce HM bioavailability in contaminated soils while promoting plant growth. However, current fungal remediation methods face limitations in efficiency, long-term effectiveness, and the ability to address combined contamination, particularly with naturally occurring strains.

View Article and Find Full Text PDF

The CO adsorption capacity of biochar depends on the type of biomass used and its physicochemical properties; various sorption parameters including temperature, CO concentration, and humidity affect the CO adsorption capacity. Biochar derived from defatted black soldier fly larvae (BSFL) biomass was investigated for direct CO capture and exhibited a hydrophilic/mesoporous structure that contained high concentrations of alkali and alkaline metals (>10 wt%), which contribute to CO chemisorption. The CO adsorption efficiency was higher at 25 °C compared with that at 30 °C and 35 °C, probably due to reduced Brownian motion of CO molecules at lower temperatures.

View Article and Find Full Text PDF

Paddy fields are a major anthropogenic source of global methane (CH) emissions, a powerful greenhouse gas (GHG). This study aimed at gaining insights of different organic and inorganic conductive materials (CMs) - biochar, fungal melanin, and magnetite - to mitigate CH emissions, and on their influence on key microbial populations, mimicking the postharvest season throughout the degradation of rice straw in microcosms under anaerobic conditions encompassing postharvest paddy rice soils from the Ebro Delta, Spain. Results showed that fungal melanin was the most effective CM, significantly reducing CH emissions by 29 %, while biochar amendment also reduced emissions by 10 %.

View Article and Find Full Text PDF

Salinity stress disrupts water uptake and nutrient absorption, causing reduced photosynthesis, stunted growth, and decreased crop yields in plants. The use of indole acetic acid (IAA), arginine (AN), and mango fruit waste biochar (MFWB) can be effective methods to overcome this problem. Indole acetic acid (IAA) is a natural auxin hormone that aids cell elongation and division, thereby increasing plant height and branching.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!