Lieb lattice has been predicted to host various exotic electronic properties due to its unusual Dirac-flat band structure. However, the realization of a Lieb lattice in a real material is still unachievable. Based on tight-binding modeling, we find that the lattice distortion can significantly determine the electronic and topological properties of a Lieb lattice. Importantly, based on first-principles calculations, we predict that the two existing covalent organic frameworks (COFs), i.e., spC-COF and spN-COF, are actually the first two material realizations of organic-ligand-based Lieb lattice. Interestingly, the spC-COF can experience the phase transitions from a paramagnetic state to a ferromagnetic one and then to a Néel antiferromagnetic one, as the carrier doping concentration increases. Our findings not only confirm the first material realization of Lieb lattice in COFs, but also offer a possible way to achieve tunable topology and magnetism in organic lattices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6940388 | PMC |
http://dx.doi.org/10.1038/s41467-019-13794-y | DOI Listing |
Nature
January 2025
Department of Chemistry, National University of Singapore, Singapore, Singapore.
Topological design of π electrons in zigzag-edged graphene nanoribbons (ZGNRs) leads to a wealth of magnetic quantum phenomena and exotic quantum phases. Symmetric ZGNRs typically show antiferromagnetically coupled spin-ordered edge states. Eliminating cross-edge magnetic coupling in ZGNRs not only enables the realization of a class of ferromagnetic quantum spin chains, enabling the exploration of quantum spin physics and entanglement of multiple qubits in the one-dimensional limit, but also establishes a long-sought-after carbon-based ferromagnetic transport channel, pivotal for ultimate scaling of GNR-based quantum electronics.
View Article and Find Full Text PDFNanotechnology
January 2025
Departamento de Física, Universidade Federal do Ceará, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil.
We investigate the electronic properties of nanoribbons made out of monolayer Lieb, transition, and kagome lattices using the tight-binding model with a generic Hamiltonian. It allows us to map the evolutionary stages of the interconvertibility process between Lieb and kagome nanoribbons by means of only one control parameter. Results for the energy spectra, the density of states, and spatial probability density distributions are discussed for nanoribbons with three types of edges: straight, bearded, and asymmetric.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA and Quantum Materials and Sensing Institute, Northeastern University, Burlington, Massachusetts 01803, USA.
In contrast to the Dirac-cone materials in which the low-energy spectrum features a pseudospin-1/2 structure, Lieb and Dice lattices both host triply degenerate low-energy excitations. Here, we discuss moiré structures involving twisted bilayers of these lattices, which are shown to exhibit a tunable number of isolated flat bands near the Fermi level due to the bipartite nature of their structures. These flat bands remain isolated from the high-energy bands even in the presence of small higher-order terms and chiral-symmetry-breaking interlayer tunneling.
View Article and Find Full Text PDFNanophotonics
April 2024
Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
The significance of bound states in the continuum (BICs) lies in their potential for theoretically infinite quality factors. However, their actual quality factors are limited by imperfections in fabrication, which lead to coupling with the radiation continuum. In this study, we present a novel approach to address this issue by introducing a merging BIC regime based on a Lieb lattice.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66c, 01069 Dresden, Germany.
ConspectusTriangulene (TRI) and its heterotriangulene (HT) derivatives are planar, triangle-shaped molecules that, via suitable coupling reactions, can form extended organic two-dimensional (2D) crystal (O2DC) structures. While TRI is a diradical, HTs are either closed-shell molecules or monoradicals which can be stabilized in their cationic form.Triangulene-based O2DCs have a characteristic honeycomb-kagome lattice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!