Dengue virus (DENV) is the etiological agent of dengue fever. Severe dengue could be fatal and there is currently no effective antiviral agent or vaccine. The only licensed vaccine, Dengvaxia, has low efficacy against serotypes 1 and 2. Cellular miRNAs are post-transcriptional regulators that could play a role in direct regulation of viral genes. Host miRNA expressions could either promote or repress viral replications. Induction of some cellular miRNAs could help the virus to evade the host immune response by suppressing the IFN-α/β signaling pathway while others could upregulate IFN-α/β production and inhibit the viral infection. Understanding miRNA expressions and functions during dengue infections would provide insights into the development of miRNA-based therapeutics which could be strategized to act either as miRNA antagonists or miRNA mimics. The known mechanisms of how miRNAs impact DENV replication are diverse. They could suppress DENV multiplication by directly binding to the viral genome, resulting in translational repression. Other miRNA actions include modulation of host factors. In addition, miRNAs that could modulate immunopathogenesis are discussed. Major hurdles lie in the development of chemical modifications and delivery systems for in vivo delivery. Nevertheless, advancement in miRNA formulations and delivery systems hold great promise for the therapeutic potential of miRNA-based therapy, as supported by Miravirsen for treatment of Hepatitis C infection which has successfully completed phase II clinical trial.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941309 | PMC |
http://dx.doi.org/10.1186/s12929-019-0614-x | DOI Listing |
J Transl Autoimmun
June 2025
Department of Dermatology, University Medical Center Regensburg, 93042, Regensburg, Germany.
Cutaneous (CLE) and systemic lupus erythematosus (SLE) are autoimmune diseases with a multifactorial pathogenesis. Ultraviolet radiation (UVR) is the most important trigger of CLE; however, the degree of photosensitivity varies between the clinical subtypes. The expression of matrix metalloproteinases (MMPs)-important enzymes involved in skin turnover and homeostasis-is modulated by UVR.
View Article and Find Full Text PDFIndian J Clin Biochem
January 2025
Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
Unlabelled: Breast cancer is the most common malignancy in the women. Chemotherapy is a crucial part of breast cancer treatment especially for advanced and metastatic forms of the disease. However, chemotherapy has limitations due to tumor heterogeneity, chemoresistance, and side effects.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States.
Introduction: Extracellular vesicles (EVs) can potently inhibit inflammation yet there is a lack of understanding about the impact of donor characteristics on the efficacy of EVs. The goal of this study was to determine whether the sex and age of donor platelet-derived EVs (PEV) affected their ability to inhibit viral myocarditis.
Methods: PEV, isolated from men and women of all ages, was compared to PEV obtained from women under 50 years of age, which we termed premenopausal PEV (pmPEV).
Front Oncol
January 2025
Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
Cancer is caused by complex interactions between genetic, environmental, and lifestyle factors, making prevention strategies, including exercise, a promising avenue for intervention. Physical activity is associated with reduced cancer incidence and progression and systemic anti-cancer effects, including improved tumor suppression and prolonged survival in preclinical models. Exercise impacts the body's nutrient balance and stimulates the release of several exercise-induced factors into circulation.
View Article and Find Full Text PDFRegen Ther
March 2025
Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
Introduction: Systemic administration of induced pluripotent stem cell-derived mesenchymal stem cells (iPS-MSCs) has a therapeutic effect on myocardial ischemia. However, the therapeutic mechanism underlying systemic iPS-MSC-based therapy for ischemic cardiomyopathy (ICM) remains unclear. We investigated the therapeutic effects of iPS-MSCs through extracellular vesicle (EV)-mediated tissue repair in a rat model of ICM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!