A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An enzymatic method for precise oxygen affinity measurements over nanomolar-to-millimolar concentration regime. | LitMetric

An enzymatic method for precise oxygen affinity measurements over nanomolar-to-millimolar concentration regime.

J Biol Inorg Chem

Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA.

Published: March 2020

Oxygen affinity is an important property of metalloproteins that helps elucidate their reactivity profile and mechanism. Heretofore, oxygen affinity values were determined either using flash photolysis and polarography techniques that require expensive instrumentation, or using oxygen titration methods which are erroneous at low nanomolar and at high millimolar oxygen concentrations. Here, we describe an inexpensive, easy-to-setup, and a one-pot method for oxygen affinity measurements that uses the enzyme chlorite dismutase (Cld) as a precise in situ oxygen source. Using this method, we measure thermodynamic and kinetic oxygen affinities (K and K) of different classes of heme and non-heme metalloproteins involved in oxygen transport, sensing, and catalysis. The method enables oxygen affinity measurements over a wide concentration range from 10 nM to 5 mM which is unattainable by simply diluting oxygen-saturated buffers. In turn, we were able to precisely measure oxygen affinities of a model set of eight different metalloproteins with affinities ranging from 48 ± 3 nM to 1.18 ± 0.03 mM. Overall, the Cld method is easy and inexpensive to set up, requires significantly lower quantities of protein, enables precise oxygen affinity measurements, and is applicable for proteins exhibiting nanomolar-to-millimolar affinity values.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9153948PMC
http://dx.doi.org/10.1007/s00775-019-01750-6DOI Listing

Publication Analysis

Top Keywords

oxygen affinity
24
affinity measurements
16
oxygen
12
precise oxygen
8
affinity values
8
oxygen affinities
8
affinity
7
enzymatic method
4
method precise
4
measurements
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!