The present study investigated the sensitization of 5-fluorouracil (5-FU)-resistant colon cancer cells , using oxymatrine, a Chinese herb, and a quinolizidine alkaloid compound extracted from the root of . The HCT-8 colon cancer cell line and its 5-FU-resistant subline HCT-8/5-FU were treated with 5-FU and oxymatrine, alone or in combination, at various doses. The cells were subsequently assessed for changes in cell viability, apoptosis and morphology and analyzed by fluorescence microscopy and western blotting. The data demonstrated that HCT-8/5-FU markedly increased the dose of 5-FU required for the suppression of tumor cell viability (78.77±1.90 µg/ml vs. 9.20±0.96 µg/ml in parental HCT-8 cells), whereas HCT-8/5-FU induced the tumor cell epithelial-mesenchymal transition (EMT). By contrast, oxymatrine alone and in combination with 5-FU altered HCT-8/5-FU cell morphology, apoptosis and EMT phenotypes. The combination of oxymatrine and 5-FU reduced the protein expression of snail family transcriptional repressor 2 and vimentin, phosphorylated p65 and induced the expression of E-cadherin, by inhibiting the nuclear factor κB (NF-κB) signaling pathway. In conclusion, the data from the present study demonstrated that EMT was associated with 5-FU chemoresistance in HCT-8/5-FU colon cancer cells, and that oxymatrine treatment was able to reverse such resistance. Oxymatrine may regulate tumor cell EMT and inactivate the NF-κB signaling pathway, and may therefore serve as a potential therapeutic drug to reverse 5-FU resistance in colon cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6924048PMC
http://dx.doi.org/10.3892/ol.2019.11090DOI Listing

Publication Analysis

Top Keywords

colon cancer
20
nf-κb signaling
12
cancer cells
12
tumor cell
12
cancer cell
8
cell epithelial-mesenchymal
8
epithelial-mesenchymal transition
8
cells oxymatrine
8
oxymatrine combination
8
cell viability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!