Acute lymphoblastic leukaemia (ALL) is one of the most common and curable types of cancer in paediatric patients. However, chemotherapeutic resistance is a difficult but common obstacle when treating leukaemia in the clinical setting. Studies have demonstrated that drug resistance is partly attributable to autophagy induced by multiple chemotherapeutic agents. As an evolutionarily conserved non-histone chromatin-binding protein, high mobility group box protein 1 (HMGB1) is considered to be an important factor in autophagy, and regulates autophagy at multiple levels via different subcellular localisations. In the present study, it was revealed that chemotherapeutic drugs induced autophagy in leukaemia cells and that translocation of HMGB1 from the nucleus to the cytoplasm is an important molecular event in this process. It was further demonstrated that poly (ADP-ribosylation) of HMGB1 facilitates its acetylation, thereby inducing HMGB1 translocation and ultimately promoting chemotherapy-induced autophagy in leukaemic cells. Targeted HMGB1 translocation may overcome chemotherapy-induced autophagy in leukaemia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6924101 | PMC |
http://dx.doi.org/10.3892/ol.2019.11116 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!