Tunable plasmonic glucose sensing based on the dissociation of Con A-aggregated dextran-coated gold colloids.

Anal Chim Acta

Institute of Fluorescence, Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201, USA.

Published: July 2004

We describe a new approach for glucose determination with tunable glucose dynamic sensing ranges, dependent on the properties of new nanosensors, which are comprised of Con A-aggregated dextran-coated gold colloids. Dextran-coated 10 or 20 nm gold colloids can be aggregated with Con A in a controlled fashion, the change in absorbance at an arbitrary wavelength used to monitor the extent of aggregation, which can be optimized for sensing. The presence of any glucose competitively binds with Con A, dissociating the dextran-coated colloids, affording for the reverse gold plasmon change and hence the determination of glucose concentrations. For one of our sensor systems, a 500K dextran-20 nm gold sensor, crosslinked with 8.70 µM Con A, a change in absorbance at 650 nm of 0.03 was observed, in response to as little as 3 mM glucose. In contrast, a 500K dextran-10 nm gold 18.7 µM Con A aggregate sensor, produced a 0.05 and 0.1 change in absorbance, respectively, by the addition of 50 and 100 mM glucose. We have found that the glucose sensing ranges can be somewhat tuned by altering the properties, and therefore the extent of aggregation of the gold aggregate sensors. Reducing the gold colloid size and dextran molecular weight typically reduces the glucose sensing range (lower [glucose]) but also reduces the long-term stability of the gold aggregate sensor. Similarly the concentration of Con A used to aggregate the system also has an effect on long term sensor stability and glucose response. In this paper, we present our findings, which offer unique opportunities and perspectives for building tunable plasmonic type glucose sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939462PMC
http://dx.doi.org/10.1016/j.aca.2004.04.060DOI Listing

Publication Analysis

Top Keywords

glucose sensing
12
dextran-coated gold
12
gold colloids
12
change absorbance
12
glucose
11
gold
9
tunable plasmonic
8
con a-aggregated
8
a-aggregated dextran-coated
8
sensing ranges
8

Similar Publications

Intrinsic fluorescence hydrogels for ON/OFF screening of antidiabetic drugs: assessing α-glucosidase inhibition by acarbose.

J Mater Chem B

January 2025

Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.

Diabetes remains one of the most prevalent chronic diseases globally, significantly impacting mortality ratetables. The development of effective treatments for controlling glucose level in blood is critical to improve the quality of life of patients with diabetes. In this sense, smart optical sensors using hydrogels, responsive to external stimuli, have emerged as a revolutionary approach to diabetes care.

View Article and Find Full Text PDF

BSA/PEI/GOD modified cellulose nanocrystals for construction of hydrogel-based flexible glucose sensors for sweat detection.

J Mater Chem B

January 2025

School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.

With the miniaturization, integration and intelligence of sweat electrochemical sensor technology, hydrogel flexible sensors have demonstrated immense potential in the field of real-time and non-invasive personal health monitoring. However, it remains a challenge to integrate excellent mechanical properties, self-healing properties, and electrochemical sensing capabilities into the preparation of hydrogel-based flexible sensors. The utilization of CBPG (cellulose nanocrystals (CNCs)@bovine serum albumin (BSA)@polyethyleneimine (PEI) glucose oxidase (GOD) nanomaterial) as both an enhancing phase and sensor probe within a hydrogel matrix, with poly(vinyl alcohol) (PVA) serving as the primary network constituent, has been proposed as a non-invasive technique for monitoring trace glucose levels in sweat.

View Article and Find Full Text PDF

VO microcubes as an alternative to peroxidase/TMB for colorimetric detection of HO: Development of glucose sensing method.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Department of Chemistry, University of Kurdistan, Sanandaj 66177-15175 Iran; Research Center for Nanotechnology, University of Kurdistan, Sanandaj 66177-15175 Iran. Electronic address:

The study focuses on the synthesis of VO microcubes for the non-enzymatic colorimetric determination of HO.Vanadium oxide nanostructures are known for their redox activity and layered structures, making VO a valuable material for sensing applications. The characterization of the prepared sample was done using XPS, XRD, Raman spectroscopy, and SEM techniques.

View Article and Find Full Text PDF

Stepwise Lighting Up Gold(I)-Thiolate Complexes from AIE Nanoaggregates to AIEE Nanoprobes with a ZIF-8 Shell for Glucose Biosensing.

Anal Chem

January 2025

School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.

Aggregation-induced emission (AIE) or aggregation-induced emission enhancement (AIEE) has endowed gold species with responsive fluorescent properties, favoring their potential applications in sensing, imaging, and therapy. However, it remains an interesting challenge to fabricate fluorophores with both AIE and AIEE effects. Herein, we presented highly luminescent Au(I) thiolate nanocomplex-based biosensors with Zn induced-AIE and zeolite imidazolate framework (ZIF-8) induced-AIEE effects.

View Article and Find Full Text PDF

Integrating commercial personal glucose meter with peroxidase-mimic DNAzyme to develop a versatile point-of-care biosensing platform.

Biosens Bioelectron

January 2025

Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:

The development of point-of-care testing (POCT) methods is highly desirable in molecular detection, as they enable disease diagnosis and biomarker monitoring on-site or at home. Repurposing existing POCT devices to detect diverse biomarkers is an economical way to develop new devices for POCT use. Personal glucose meter (PGM) is one of the most used off-the-shelf POCT devices that has been reused to detect non-glucose targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!