AI Article Synopsis

  • * This study combines core functions of the secretory pathway with metabolic reconstructions of various mammalian cells to calculate the energetic and machinery demands for each secreted protein.
  • * Findings suggest that highly secretory cells adapt by minimizing the expression of other costly proteins, and the research can predict the metabolic costs and maximum productivity for biotherapeutic proteins, providing a valuable resource for biotechnology.

Article Abstract

In mammalian cells, >25% of synthesized proteins are exported through the secretory pathway. The pathway complexity, however, obfuscates its impact on the secretion of different proteins. Unraveling its impact on diverse proteins is particularly important for biopharmaceutical production. Here we delineate the core secretory pathway functions and integrate them with genome-scale metabolic reconstructions of human, mouse, and Chinese hamster ovary cells. The resulting reconstructions enable the computation of energetic costs and machinery demands of each secreted protein. By integrating additional omics data, we find that highly secretory cells have adapted to reduce expression and secretion of other expensive host cell proteins. Furthermore, we predict metabolic costs and maximum productivities of biotherapeutic proteins and identify protein features that most significantly impact protein secretion. Finally, the model successfully predicts the increase in secretion of a monoclonal antibody after silencing a highly expressed selection marker. This work represents a knowledgebase of the mammalian secretory pathway that serves as a novel tool for systems biotechnology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6940358PMC
http://dx.doi.org/10.1038/s41467-019-13867-yDOI Listing

Publication Analysis

Top Keywords

secretory pathway
16
mammalian secretory
8
predict metabolic
8
metabolic costs
8
protein secretion
8
secretory
5
pathway
5
secretion
5
proteins
5
genome-scale reconstructions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!