Fluorotelomer compounds in landfill leachate can undergo biotransformation under aerobic conditions and act as a secondary source of perfluorocarboxylic acids (PFCAs) to the environment. Very little is known about the role of various microbial communities towards fluorotelomer compounds biotransformation. Using an inoculum prepared from the sediment of a leachate collection ditch, 6:2 fluorotelomer sulfonate (6:2 FTS) biotransformation experiments were carried out. Specific substrates (i.e., glucose, ammonia) and ammonia-oxidizing inhibitor (allylthiourea) were used to produce two experimental runs with heterotrophic (HET) growth only and heterotrophic with ammonia-oxidizing and nitrite- oxidizing bacteria (HET + AOB + NOB). After 10 days, ∼20% of the spiked 6:2 FTS removal was observed in HET + AOB + NOB, compared to ∼7% under HET condition. Higher 6:2 FTS removal in HET + AOB + NOB likely resulted from ammonia monooxygenase enzyme that catalyzes the first step of ammonia oxidation. The HET + AOB + NOB condition also showed higher PFCA (C4-C6) formation (∼2% of initially spiked 6:2 FTS), possibly due to higher overall bioactivity. Microbial community analysis through 16s rRNA sequencing confirmed that Proteobacteria and Bacteroidetes were the most abundant phyla (>75% relative abundance) under all experimental conditions. High abundance of Actinobacteria (>17%) was observed under the HET + AOB + NOB condition on day 7. Since Actinobacteria can synthesize a wide range of enzymes including monooxygenases, they likely play an important role in 6:2 FTS biotransformation and PFCA production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2019.113835DOI Listing

Publication Analysis

Top Keywords

perfluorocarboxylic acids
8
fluorotelomer sulfonate
8
sulfonate fts
8
landfill leachate
8
role microbial
8
microbial communities
8
communities fluorotelomer
8
fluorotelomer compounds
8
fts biotransformation
8
spiked fts
8

Similar Publications

Occurrence, bioaccumulation and trophodynamics of per- and polyfluoroalkyl substances (PFAS) in terrestrial and marine ecosystems of Svalbard, Arctic.

Water Res

December 2024

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.

Per- and polyfluoroalkyl substances (PFAS) enter the Arctic through long-range transport and local pollution. To date, little is known about their behavior in plant and benthic marine food webs in remote Arctic. In this study, we analyzed the environmental distribution and nutrient transfer of 20 PFAS in soil, sediment, plant and benthic biota samples collected between 2014 and 2016 in Svalbard, Arctic.

View Article and Find Full Text PDF

Stormwater discharges affect PFAS occurrence, concentrations, and spatial distribution in water and bottom sediment of urban streams.

Water Res

December 2024

Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 971 87, Sweden. Electronic address:

Per- and polyfluoroalkyl substances (PFAS) are extensively used in urban environments and are, thus, found in urban stormwater. However, the relevance of stormwater as a pathway for PFAS to urban streams is largely unknown. This study evaluated the impact of urban stormwater runoff on PFAS concentrations and spatial distribution in three urban streams affected by stormwater discharges from separate sewer systems.

View Article and Find Full Text PDF

Assessing PFAS in Drinking Water: Insights from the Czech Republic's Risk-Based Monitoring Approach.

Chemosphere

December 2024

University of Chemistry and Technology (UCT), Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, 166 28, Prague, Czech Republic.

This study investigates the presence of perfluoroalkyl substances (PFAS) in the drinking water supplies in the Czech Republic using a risk-based monitoring approach. Tap water samples (n=27) from sources close to areas potentially contaminated with PFAS were analysed. A total of 28 PFAS were measured using ultra-performance liquid chromatography with tandem mass spectrometry after solid phase extraction.

View Article and Find Full Text PDF

The thermal decomposition of per- and poly fluoroalkyl substances (PFAS) is poorly understood. Here, we present an innovative, comprehensive analytical method to investigate their thermal decomposition, including perfluorocarboxylic acids (PFCAs), alcohol, sulfonates, and GenX (acid dimer), focusing on identifying their breakdown products. In this study, evolved gas analysis-mass spectrometry (EGA-MS) was used for fast real-time screening to determine the significant temperatures to be investigated with the thermal desorption-pyrolysis coupled with gas chromatography-mass spectrometry (TD-Py-GC-MS), which provided detailed information about evolved PFAS and their breakdown products.

View Article and Find Full Text PDF

Plant species dominance over PFAAs in structuring bacterial communities and their functional profiles in treatment wetlands.

Environ Pollut

December 2024

Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020, Legnaro, (PD), Italy.

This study investigates the impact of different plant species (Iris pseudacorus L., Phragmites australis (Cav.) Trin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!