Biomimetic design of dorsal fins for AUVs to enhance maneuverability.

Bioinspir Biomim

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America. Author to whom any correspondence should be addressed.

Published: March 2020

We demonstrate that shape-changing or morphing fins provide a new paradigm for improving the ability of vehicles to maneuver and move rapidly underwater. An ingenuous solution is employed by fish to accommodate both the need for stability of locomotion and the ability to perform tight maneuvers: Retractable fins can alter the stability properties of a vehicle to suit their particular goals. Tunas, for example, are large fish that are fast swimmers and yet they need rapid turning agility to track the smaller fish they pursue; they have perfected the use of their dorsal and ventral fins to ensure stability when retracted and rapid turning when erected. Although fish employ unsteady propulsors rather than propellers, we show that engineering rigid-hull underwater vehicles can also exploit similar solutions. We explore the basic flow mechanisms and design considerations of employing morphing fins to alter the stability and maneuvering qualities of vehicles and apply unsteady forces and moments under active control. We also show results from maneuvering simulations and experiments on a model of an underwater vehicle.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-3190/ab6708DOI Listing

Publication Analysis

Top Keywords

morphing fins
8
fins alter
8
alter stability
8
rapid turning
8
fins
5
biomimetic design
4
design dorsal
4
dorsal fins
4
fins auvs
4
auvs enhance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!