BACKGROUNDMitochondrial dysfunction, a proposed mechanism of chronic obstructive pulmonary disease (COPD) pathogenesis, is associated with the leakage of mitochondrial DNA (mtDNA), which may be detected extracellularly in various bodily fluids. Despite evidence for the increased prevalence of chronic kidney disease in COPD subjects and for mitochondrial dysfunction in the kidneys of murine COPD models, whether urine mtDNA (u-mtDNA) associates with measures of disease severity in COPD is unknown.METHODSCell-free u-mtDNA, defined as copy number of mitochondrially encoded NADH dehydrogenase-1 (MTND1) gene, was measured by quantitative PCR and normalized to urine creatinine in cell-free urine samples from participants in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) cohort. Urine albumin/creatinine ratios (UACR) were measured in the same samples. Associations between u-mtDNA, UACR, and clinical disease parameters - including FEV1 % predicted, clinical measures of exercise tolerance, respiratory symptom burden, and chest CT measures of lung structure - were examined.RESULTSU-mtDNA and UACR levels were measured in never smokers (n = 64), smokers without airflow obstruction (n = 109), participants with mild/moderate COPD (n = 142), and participants with severe COPD (n = 168). U-mtDNA was associated with increased respiratory symptom burden, especially among smokers without COPD. Significant sex differences in u-mtDNA levels were observed, with females having higher u-mtDNA levels across all study subgroups. U-mtDNA associated with worse spirometry and CT emphysema in males only and with worse respiratory symptoms in females only. Similar associations were not found with UACR.CONCLUSIONU-mtDNA levels may help to identify distinct clinical phenotypes and underlying pathobiological differences in males versus females with COPD.TRIAL REGISTRATIONThis study has been registered at ClinicalTrials.gov ( NCT01969344).FUNDINGUS NIH, National Heart, Lung and Blood Institute, supplemented by contributions made through the Foundation for the NIH and the COPD Foundation from AstraZeneca/MedImmune, Bayer, Bellerophon Therapeutics, Boehringer-Ingelheim Pharmaceuticals Inc., Chiesi Farmaceutici S.p.A., Forest Research Institute Inc., GlaxoSmithKline, Grifols Therapeutics Inc., Ikaria Inc., Novartis Pharmaceuticals Corporation, Nycomed GmbH, ProterixBio, Regeneron Pharmaceuticals Inc., Sanofi, Sunovion, Takeda Pharmaceutical Company, and Theravance Biopharma and Mylan.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7098791PMC
http://dx.doi.org/10.1172/jci.insight.133984DOI Listing

Publication Analysis

Top Keywords

copd
10
mitochondrial dna
8
clinical measures
8
measures copd
8
spiromics cohort
8
disease copd
8
respiratory symptom
8
symptom burden
8
u-mtdna associated
8
u-mtdna levels
8

Similar Publications

Obesity, along with hypoxia, is known to be a risk factor for pulmonary hypertension (PH), which can lead to right ventricular hypertrophy and eventually heart failure. Both obesity and PH influence the autonomic nervous system (ANS), potentially aggravating changes in the right ventricle (RV). This study investigates the combined effects of obesity and hypoxia on the autonomic innervation of the RV in a mouse model.

View Article and Find Full Text PDF

Background: Chronic respiratory diseases (CRD) represents a series of lung disorders and is posing a global health burden. Systemic inflammation and phenotypic ageing have been respectively reported to associate with certain CRD. However, little is known about the co-exposures and mutual associations of inflammation and ageing with CRD.

View Article and Find Full Text PDF

Complete genome sequence of Pseudarthrobacter sp. NIBRBAC000502770 from coal mine of Hongcheon on Republic of Korea.

BMC Genom Data

January 2025

Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.

Objectives: The data were collected to obtain the complete genome sequence of Pseudarthrobacter sp. NIBRBAC000502770, isolated from the rhizosphere of Sasamorpha in a heavy metal-contaminated coal mine in Hongcheon, Republic of Korea. The objective was to explore the strain's genetic potential for plant growth promotion and heavy metal resistance, particularly arsenate and copper.

View Article and Find Full Text PDF

IRAK4: potential therapeutic target for airway disease exacerbations.

Trends Pharmacol Sci

January 2025

Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers, The State University of New Jersey, 89 French Street, Suite 4210, New Brunswick, NJ 08901, USA. Electronic address:

Inflammatory lung diseases represent a significant healthcare burden. There is an unmet need for identifying therapeutic targets for inflammatory lung diseases, such as asthma, and chronic obstructive pulmonary disease (COPD). In a recent study, Sayers et al.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!