Enzymatic Synthesis of Designer DNA Using Cyclic Reversible Termination and a Universal Template.

ACS Synth Biol

Department of Advanced Research and Development , Centrillion Biosciences , Palo Alto , California 94303 , United States.

Published: February 2020

Phosphoramidite chemistry remains the industry standard for DNA synthesis despite significant limitations on the length and yield of the oligonucleotide, time restrictions, and hazardous waste production. Herein, we demonstrate the synthesis of single-stranded oligos on a solid surface by DNA polymerases and reverse transcriptases. We report the extension of surface-bound oligonucleotides enabled by transient hybridization of as few as two bases to a neighboring strand. When multiple hybridization structures are possible, each templating a different base, a DNA polymerase or reverse transcriptase can extend the oligonucleotide with any of the complementary bases. Therefore, the sequence of the newly synthesized fragment can be controlled by adding only the desired base as a substrate to the reaction solution. We used this enzymatic approach to synthesize a 20 base oligonucleotide by incorporating reversible terminator dNTPs through a two-step cyclic reversible termination process with a corrected stepwise efficiency over 98%. In our approach, a nascent DNA strand that serves as both primer and template is extended through polymerase-controlled sequential addition of 3'-reversibly blocked nucleotides followed by subsequent cleavage of the 3'-capping group. This process enables oligonucleotide synthesis in an environment not permitted by traditional phosphoramidite methods, eliminates the need for hazardous chemicals, has the potential to provide faster and higher yield results, and synthesizes DNA on a solid support with a free 3' end.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.9b00315DOI Listing

Publication Analysis

Top Keywords

cyclic reversible
8
reversible termination
8
dna
6
enzymatic synthesis
4
synthesis designer
4
designer dna
4
dna cyclic
4
termination universal
4
universal template
4
template phosphoramidite
4

Similar Publications

Ternary NASICON-Type NaVMnFe(PO)/NC@CNTs Cathode with Reversible Multielectron Reaction and Long Life for Na-Ion Batteries.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, China.

Na superionic conductor (NASICON)-structure NaMnV(PO) (NVMP) electrode materials reveal highly attractive application prospects due to ultrahigh energy density originating from two-electron reactions. Nevertheless, NVMP also encounters challenges with its poor electronic conductivity, Mn dissolution, and Jahn-Teller distortion. To address this issue, utilizing N-doped carbon layers and carbon nanotubes (CNTs) for dual encapsulation enhances the material's electronic conductivity, creating an effective electron transport network that promotes the rapid diffusion and storage of Na.

View Article and Find Full Text PDF

Phosphorothioate (PS) modifications in single-guided RNA (sgRNA) are crucial for genome editing applications using the CRISPR/Cas9 system. These modifications may enhance sgRNA stability, pharmacokinetics, and binding to targets, thereby facilitating the desired genetic alterations. Incorporating multiple PS groups at varying positions may introduce chiral centers into the sgRNA backbone, resulting in a complex mixture of constitutional- and stereoisomers that challenges current analytical capabilities for reliable identification and quantification.

View Article and Find Full Text PDF

Swimming and flying animals produce thrust with oscillating fins, flukes or wings. The relationship between frequency , amplitude and forward velocity can be described with a Strouhal number , where = 2/, where animals are observed to cruise with [Formula: see text]-0.4.

View Article and Find Full Text PDF

In silico and in vitro evaluation of the potential genotoxic impurities of vildagliptin.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Toxicology, Faculty of Pharmacy, Yeditepe University, 34755, Ataşehir, Istanbul, Turkey.

Establishing the safety of impurities in drug substances or products is crucial. The assessment of genotoxicity for these impurities and determining the acceptable limits pose considerable challenges, as recognized in recent guidelines. While the genotoxicity profile of vildagliptin-an oral hypoglycemic drug-is well established, there is limited knowledge about the genotoxic potential of its impurities.

View Article and Find Full Text PDF

Evaporation-Assisted Synthesis of Olympic Gels.

Angew Chem Int Ed Engl

January 2025

UESTC: University of Electronic Science and Technology of China, Institute of Fundamental and Frontier Sciences, Jianshe Road, Chengdu, CHINA.

Catenated networks exclusively composed of intertwining rings were first envisioned as "Olympic gels" by Pierre-Gilles de Gennes four decades ago but have not been successfully prepared in artificial materials yet due to the challenge in synthesis. Herein, we present a bio-inspired, evaporation-assisted strategy to address this issue. In our design, the evaporation of liquid catalysts that induce ring-chain equilibrium of polymer systems drives macrocycles to encounter and assists their catenation through reversible cyclization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!