Aims: We evaluated the ability of an ultrahigh mapping system to identify the most convenient Rhythmia ablation target (RAT) in intra-atrial re-entrant tachycardias (IART) in terms of the narrowest area to transect to interrupt the re-entry.
Methods: A total of 24 consecutive patients were enrolled with a total of 26 IARTs. The Rhythmia mapping system was used to identify the RAT in all IARTs.
Results: In 18 cases the RAT matched the mid-diastolic phase of the re-entry whereas in 8 cases the RAT differed. In these patients, the mid-diastolic tissue in the active circuit never represented the area with the slowest conduction velocity of the re-entry. The mean conduction velocity at the mid-diastolic site was significantly slower in the group of patients in which the RAT matched the mid-diastolic site (P = 0.0173) and that of the remaining circuit was significantly slower in the group in which the RAT did not match (P = 0.0068). The mean conduction velocity at the RAT was comparable between the two groups (P = 0.66).
Conclusion: Identifying the RAT in challenging IARTs by means of high-density representation of the wavefront propagation of the tachycardia seems feasible and effective. In one-third of cases this approach identifies an area that differs from the mid-diastolic corridor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2459/JCM.0000000000000923 | DOI Listing |
J Clin Monit Comput
December 2024
Department of Anesthesia and Intensive Care, "Policlinico San Marco" University Hospital, Catania, Italy.
Echocardiography is crucial for evaluating patients at risk of clinical deterioration. Left ventricular ejection fraction (LVEF) and velocity time integral (VTI) aid in diagnosing shock, but bedside calculations can be time-consuming and prone to variability. Artificial intelligence technology shows promise in providing assistance to clinicians performing point-of-care echocardiography.
View Article and Find Full Text PDFJ Funct Morphol Kinesiol
December 2024
Department of Physical Therapy, School of Rehabilitation, Biwako Professional University of Rehabilitation, Higashiomi 527-0145, Japan.
Background/objectives: The active straight leg raise requires intricate coordination between the hip, knee, pelvis, and spine. Despite its complexity, limited research has explored the relationship between lower limb raising velocity and trunk muscle motor control during an active straight leg raise in healthy individuals. This study aimed to explore the potential effects of increased lower limb raising velocity on core muscle contractions during active straight leg raises.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2024
Ocean and Maritime Digital Technology Research Division, Korea Research Institute of Ships and Ocean Engineering, Daejeon 34103, Republic of Korea.
Although the Doppler velocity log is widely applied to measure underwater fluid flow, it requires high power and is inappropriate for measuring low flow velocity. This study proposes a fluid flow sensor that utilizes optical flow sensing. The proposed sensor mimics the neuromast of a fish by attaching a phosphor to two pillar structures (A and B) produced using ethylene propylene diene monomer rubber.
View Article and Find Full Text PDFGels
December 2024
Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China.
The utilization of CO foam gel fracturing fluid offers several significant advantages, including minimal reservoir damage, reduced water consumption during application, enhanced cleaning efficiency, and additional beneficial properties. However, several current CO foam gel fracturing fluid systems face challenges, such as complex preparation processes and insufficient viscosity, which limit their proppant transport capacity. To address these issues, this work develops a novel CO foam gel fracturing fluid system characterized by simple preparation and robust foam stability.
View Article and Find Full Text PDFLangmuir
December 2024
School of Computer and Artifitial Intelligence, Beijing Technology and Business University, Beijing 100048, China.
Inspired by the ultrafast directional water transport structure of Sarracenia trichomes, hierarchical textured surfaces with specific microgrooves were prepared based on laser processing combined with dip modification, in response to the growing problem of freshwater scarcity. The prepared surfaces were tested for droplet transport behavior to investigate the relationship between the surface structure and the driving force of directional water transport and their effects on the water transport distance and water transport velocity. The results showed that surfaces with a superhydrophobic background associated channels of multirib structures, and a dual-gradient surface of gradient hydrophobic background associated channels with gradient structure performed the best in terms of water transport efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!