Objective: The aim of this study was to observe the impacts of the specific cyclooxygenase-2 inhibitor celecoxib on cardiac structures, functions, and inflammatory factors during the process of pressure overload-induced myocardial hypertrophy.

Methods: Twenty-four male Sprague Dawley rats were randomly divided into 3 groups: the sham operation group, the surgery group, and the celecoxib group. The model was established according to the abdominal aortic coarctation method.

Results: At 16 weeks, rats in the celecoxib group were fed a celecoxib-mixed diet (10 mg/kg) for 8 consecutive weeks. At week 24 after model establishment, the cardiac structures and functions were observed; changes in the levels of tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, prostaglandin E2 (PGE2), C-reactive protein (CRP), and uric acid (UA) were detected; and the contents of Smad1/2/3 proteins (Smad1, Smad2, and Smad3)  were determined. Left ventricular mass index, the heart weight/body weight ratio, and TNF-α, TGF-β, PGE2, CRP, and UA levels of the celecoxib group were all significantly decreased relative to those of the surgery group (P < .05); moreover, the cardiac functions were significantly improved compared to those of the surgery group (P < .05).

Conclusions: These results show that inflammatory factors are involved in the myocardial hypertrophy process and that celecoxib may reverse myocardial hypertrophy through a variety of pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1532/hsf.1971DOI Listing

Publication Analysis

Top Keywords

myocardial hypertrophy
12
surgery group
12
celecoxib group
12
impacts specific
8
specific cyclooxygenase-2
8
cyclooxygenase-2 inhibitor
8
pressure overload-induced
8
overload-induced myocardial
8
cardiac structures
8
structures functions
8

Similar Publications

Dietary sulfur amino acid restriction (SAAR) elicits various health benefits, some mediated by fibroblast growth factor 21 (FGF21). However, research on SAAR's effects on the heart is limited and presents mixed findings. This study aimed to evaluate SAAR-induced molecular alterations associated with cardiac remodeling and their dependence on FGF21.

View Article and Find Full Text PDF

The cardiac myosin binding protein-C (cMyBP-C) regulates cross-bridge formation and controls the duration of systole and diastole at the whole heart level. As known, mutations in cMyBP-C increase the cross-bridge number and rate of their cycling, hypercontractility, and myocardial hypertrophy. We investigated the effects of the mutations D75N and P161S of cMyBP-C related to hypertrophic cardiomyopathy on the mechanism of force generation in isolated slow skeletal muscle fibers.

View Article and Find Full Text PDF

Ischemia-reperfusion (I/R) injury is a process in which impaired perfusion is restored by restoring blood flow and tissue recirculation. Nanomedicine uses cutting-edge technologies that emerge from interdisciplinary influences. In the literature, there are very few in vivo and in vitro studies on how cerium oxide (CeO) affects systemic anti-inflammatory response and inflammation.

View Article and Find Full Text PDF

Acute myocardial infarction (AMI) is a critical medical condition that requires immediate attention to minimise heart damage and improve survival rates. Early identification and prompt treatment are essential to save the patient's life. Currently, the treatment strategy focuses on restoring blood flow to the myocardium as quickly as possible.

View Article and Find Full Text PDF

MicroRNA and Heart Failure: A Novel Promising Diagnostic and Therapeutic Tool.

J Clin Med

December 2024

Cardio Thoracic and Vascular Department, 'S. Maria alle Scotte Hospital', University of Siena, 53100 Siena, Italy.

Heart failure (HF) has a multifaceted and complex pathophysiology. Beyond neurohormonal, renin-angiotensin-aldosterone system, and adrenergic hyperactivation, a role for other pathophysiological determinants is emerging. Genetic and epigenetic factors are involved in this syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!