A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The fungal mitochondrial membrane protein, BbOhmm, antagonistically controls hypoxia tolerance. | LitMetric

The fungal mitochondrial membrane protein, BbOhmm, antagonistically controls hypoxia tolerance.

Environ Microbiol

Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.

Published: July 2020

Adaptation to low-oxygen (LO) environment in host tissues is crucial for microbial pathogens, particularly fungi, to successfully infect target hosts. However, the underlying mechanisms responsible for hypoxia tolerance in most pathogens are poorly understood. A mitochondrial protein, BbOhmm, is demonstrated to limit oxidative stress resistance and virulence in the insect fungal pathogen, Beauveria bassiana. Here, we found that BbOhmm negatively affected hypoxic adaptation in the insect haemocoel while regulating respiration-related events, heme synthesis and mitochondrial iron homeostasis. A homologue of the mammalian sterol regulatory element-binding proteins (SREBPs), BbSre1, was shown to be involved in BbOhmm-mediated LO adaptation. Inactivation of BbSre1 resulted in a significant increase in sensitivity to hypoxic and oxidative stress. Similar to ΔBbOhmm, ΔBbSre1 or the ΔBbOhmmΔBbSre1 double mutant accumulated high levels of heme and mitochondrial iron, regulating the similar pathways during hypoxic stress. BbSre1 transcriptional activity and nuclear import were repressed in ΔBbOhmm cells and affected by intracellular reactive oxygen species (ROS) and oxygen levels. These findings have led to a new model in which BbOhmm affects ROS homeostasis in combination with available oxygen to control the transcriptional activity of BbSre1, which in turn mediates LO adaptation by regulating mitochondrial iron homeostasis, heme synthesis and respiration-implicated genes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.14910DOI Listing

Publication Analysis

Top Keywords

mitochondrial iron
12
protein bbohmm
8
hypoxia tolerance
8
oxidative stress
8
heme synthesis
8
iron homeostasis
8
transcriptional activity
8
fungal mitochondrial
4
mitochondrial membrane
4
membrane protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!