Maize NCP1 negatively regulates drought and ABA responses through interacting with and inhibiting the activity of transcription factor ABP9.

Plant Mol Biol

Faculty of Maize Functional Genomics, Biotechnology Research Institute, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China.

Published: February 2020

NCP1, a NINJA family protein lacking EAR motif, acts as a negative regulator of ABA signaling by interacting with and inhibiting the activity of transcriptional activator ABP9. The phytohormone abscisic acid plays a pivotal role in regulating plant responses to a variety of abiotic stresses including drought and salinity. Maize ABP9 is an ABRE-binding bZIP transcription activator that enhances plant tolerance to multiple stresses by positively regulating ABA signaling, but the molecular mechanism by which ABP9 is regulated in mediating ABA responses remains unknown. Here, we report the identification of an ABP9-interacting protein, named ABP Nine Complex Protein 1 (NCP1) and its functional characterization. NCP1 belongs to the recently identified NINJA family proteins, but lacks the conserved EAR motif, which is a hallmark of this class of transcriptional repressors. In vitro and in vivo assays confirmed that NCP1 physically interacts with ABP9 and that they are co-localized in the nucleus. In addition, NCP1 and ABP9 are similarly induced with similar patterns by ABA treatment and osmotic stress. Interestingly, NCP1 over-expressing Arabidopsis plants exhibited a reduced sensitivity to ABA and decreased drought tolerance. Transient assay in maize protoplasts showed that NCP1 inhibits the activity of ABP9 in activating ABRE-mediated reporter gene expression, a notion further supported by genetic analysis of drought and ABA responses in the transgenic plants over-expressing both ABP9 and NCP1. These data together suggest that NCP1 is a novel negative regulator of ABA signaling via interacting with and inhibiting the activity of ABP9.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-019-00951-6DOI Listing

Publication Analysis

Top Keywords

aba responses
12
interacting inhibiting
12
inhibiting activity
12
aba signaling
12
abp9
9
ncp1
9
aba
8
drought aba
8
abp9 ncp1
8
ninja family
8

Similar Publications

12-oxo-phytodienoic acid reductase (OPR) is one of the key enzymes in the octadecanoid pathway, and it controls the last step of jasmonic acid (JA) biosynthesis. Although multiple isoforms and functions of s have been identified in various plants, no genes have been identified, and their possible roles in grapevine development and defense mechanisms remain unknown. In this study, nine genes were identified from grapevine genome and classified into two subfamilies.

View Article and Find Full Text PDF

Functional analysis and interaction networks of Rboh in poplar under abiotic stress.

Front Plant Sci

February 2025

Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China (Ministry of Education), College of Forestry, Southwest Forestry University, Kunming, China.

Introduction: Plant respiratory burst oxidase homologs (Rbohs) are essential in the generation of reactive oxygen species (ROS) and play critical roles in plant stress responses. Despite their importance, Rbohs in poplar species remain under-explored, especially in terms of their characteristics and functional diversity across different species within the same genus.

Methods: In this study, we employed bioinformatics methods to identify 62 Rboh genes across five poplar species.

View Article and Find Full Text PDF

The JASMONATE-ZIM DOMAIN (JAZ) repressors are crucial proteins in the jasmonic acid signaling pathway that play a significant role in plant growth, development and response to abiotic stress (such as drought, heat, salinity, and low temperature). In this study, we identified 26 potato genes and classified the corresponding predicted proteins into five subfamilies. All potato JAZ proteins exhibited the expected conserved TIFY (TIF[F/Y] XG) and JAZ domains.

View Article and Find Full Text PDF

Calmodulin (CaM) family members play crucial roles in the response to various abiotic stresses. However, the functions of CaMs in the response to drought stress in maize are unclear. In this study, a CaM gene, , was isolated from the maize () inbred line B73.

View Article and Find Full Text PDF

Comparative Genomic Analysis of the Poaceae Cytokinin Response Regulator Gene Family and Functional Characterization of in Drought Stress Tolerance in Rice.

Int J Mol Sci

February 2025

Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China.

The cytokinin (CK) type B response regulator () gene is involved in the CK signaling pathway and performs a key function for mediating reactions to amounts of abiotic stresses. Nevertheless, the gene family remains to be characterized in Poaceae (also known as Gramineae or grasses). Here, we performed a comprehensive analysis encompassing phylogenetic relationships, evolutionary pressures, and expression patterns of the gene family in six Poaceae species, including rice, , , , maize, and wheat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!