As a kind of conventional metal nanomaterial, nickel nanoparticles (Ni NPs) have broad application prospects in the fields of magnetism, energy technology and biomedicine and have quickly attracted great interest. The potential negative effects of Ni NPs have also attracted wide attention from some researchers. Studies have shown that Ni NPs cause a variety of toxic effects on cells, animals and humans and have toxic effects of multiple systems such as respiratory system, cardiovascular system and reproductive system. Ni NPs can lead to oxidative stress, apoptosis, DNA damage and inflammation and induce the increase of intracellular reactive oxygen species. The toxicity of Ni NPs is also found to be related to the mitogen-activated protein kinase pathway and the hypoxia inducible factor-1α pathway. Therefore, the toxicity and mechanism of Ni NPs are reviewed in this paper, and the future researches in this field are also proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10653-019-00491-4 | DOI Listing |
Small
January 2025
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
The photocatalytic reduction of CO in water to produce fuels and chemicals is promising while challenging. However, many photocatalysts for accomplishing such challenging task usually suffer from unspecific catalytic active sites and the inefficient charge carrier's separation. Here, a site-specific single-atom Ni/TiO catalyst is reported by in situ topological transformation of Ni-Ti-EG bimetallic metal-organic frameworks.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, 100000 Tashkent, Uzbekistan.
Convectional drugs have failed to tackle the increasing public health challenge of Cancer and diabetes. Phytochemical conjugated nanoparticles are providing safer therapeutic alternatives to address this global challenge. Nanoparticles of nickel, iron and zinc are especially useful because of their magnetic properties, abilities to prevent the onset or slow the progression of these diseases.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
The catalysts of Ni nanoparticles supported on ZrO, LaO and LaZrO were prepared and employed in photothermal catalytic DRM. High yield of H and CO (76.2 and 99.
View Article and Find Full Text PDFMolecules
December 2024
School of Aeronautics and Astronautics, Sichuan Univeristy, Chengdu 610065, China.
Constructing fast electron transfer pathways and abundant electro-active sites is an effective strategy to improve the oxygen evolution reaction (OER) performance of catalysts. Herein, structural engineering and dual-phase engineering were employed to construct a NiS nanoparticle-encapsulated MOF configured with a pseudo-neuronal structure (NiS/MOF/HT). It was found that the pseudo-neuronal structure, constructed with a carbon nanohorn (CNH) and carbon nanotube (CNT), provided fast electron transfer pathways and abundant exposed active sites.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Materials Science, Montanuniversität Leoben, 8700 Leoben, Austria.
Nanoparticles are essential for energy storage, catalysis, and medical applications, emphasizing their accurate chemical characterization. However, atom probe tomography (APT) of nanoparticles sandwiched at the interface between an encapsulating film and a substrate poses difficulties. Poor adhesion at the film-substrate interface can cause specimen fracture during APT, while impurities may introduce additional peaks in the mass spectra.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!