DNA Strand Displacement Reaction: A Powerful Tool for Discriminating Single Nucleotide Variants.

Top Curr Chem (Cham)

College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China.

Published: January 2020

AI Article Synopsis

  • Single-nucleotide variants (SNVs) are key to understanding genetic diseases and tumors, making their detection crucial for effective diagnosis and prognosis.
  • Recent advancements in DNA nanotechnology have improved the sensitivity and specificity of SNV detection methods through innovative strategies, particularly those involving DNA strand displacement.
  • This review categorizes current SNV detection techniques into three types: toehold-mediated strand displacement, toehold-exchange reactions, and enzyme-mediated strand displacement, highlighting their mechanisms and potential use in diagnostic applications.

Article Abstract

Single-nucleotide variants (SNVs) that are strongly associated with many genetic diseases and tumors are important both biologically and clinically. Detection of SNVs holds great potential for disease diagnosis and prognosis. Recent advances in DNA nanotechnology have offered numerous principles and strategies amenable to the detection and quantification of SNVs with high sensitivity, specificity, and programmability. In this review, we will focus our discussion on emerging techniques making use of DNA strand displacement, a basic building block in dynamic DNA nanotechnology. Based on their operation principles, we classify current SNV detection methods into three main categories, including strategies using toehold-mediated strand displacement reactions, toehold-exchange reactions, and enzyme-mediated strand displacement reactions. These detection methods discriminate SNVs from their wild-type counterparts through subtle differences in thermodynamics, kinetics, or response to enzymatic manipulation. The remarkable programmability of dynamic DNA nanotechnology also allows the predictable design and flexible operation of diverse strand displacement probes and/or primers. Here, we offer a systematic survey of current strategies, with an emphasis on the molecular mechanisms and their applicability to in vitro diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s41061-019-0274-zDOI Listing

Publication Analysis

Top Keywords

strand displacement
20
dna nanotechnology
12
dna strand
8
dynamic dna
8
detection methods
8
displacement reactions
8
dna
5
displacement
5
displacement reaction
4
reaction powerful
4

Similar Publications

Self-Sustained Biophotocatalytic Nano-Organelle Reactors with Programmable DNA Switches for Combating Tumor Metastasis.

Adv Mater

January 2025

Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China.

Metastasis, the leading cause of mortality in cancer patients, presents challenges for conventional photodynamic therapy (PDT) due to its reliance on localized light and oxygen application to tumors. To overcome these limitations, a self-sustained organelle-mimicking nanoreactor is developed here with programmable DNA switches that enables bio-chem-photocatalytic cascade-driven starvation-photodynamic synergistic therapy against tumor metastasis. Emulating the compartmentalization and positional assembly strategies found in living cells, this nano-organelle reactor allows quantitative co-compartmentalization of multiple functional modules for the designed self-illuminating chemiexcited PDT system.

View Article and Find Full Text PDF

The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.

View Article and Find Full Text PDF

In the last decade the important role of small non-coding RNAs such as micro RNAs (miRs) in gene regulation in healthy and disease states became more and more evident. The miR-200-family of miRs has been shown to play a critical role in many diseases such as cancer and neurodegenerative disorders and could be potentially important for diagnosis and treatment. However, the size of miRs of about ~21-23nt provide challenges for their investigation.

View Article and Find Full Text PDF

A Smart mRNA-Initiated Theranostic Multi-shRNA Nanofactory for Precise and Efficient Cancer Gene Therapy.

Adv Healthc Mater

January 2025

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.

Despite the significant potential of short hairpin RNA (shRNA)-mediated gene therapy for various diseases, the clinical success of cancer treatment remains poor, partly because of low selectivity and low efficiency. In this study, an mRNA-initiated autonomous multi-shRNA nanofactory (RNF@CM) is designed for in vivo amplification imaging and precise cancer treatment. The RNF@CM consists of a gold nanoparticle core, an interlayer of two types of three-stranded DNA/RNA hybrid probes, one of which is bound to aptamer-inhibited DNA polymerases, and an outer layer of the cancer cell membrane.

View Article and Find Full Text PDF

CAG/CTG repeats are prone to expansion, causing several inherited human diseases. The initiating sources of DNA damage which lead to inaccurate repair of the repeat tract to cause expansions are not fully understood. Expansion-prone CAG/CTG repeats are actively transcribed and prone to forming stable R-loops with hairpin structures forming on the displaced single-stranded DNA (S-loops).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!