Fatigue is one of the most common non-motor symptoms in Parkinson's disease (PD). Despite its clinical importance, there are few studies on the cause or mechanism of fatigue. Our aim was to find brain areas related to fatigue and to explore the association between striatal dopaminergic dysfunction and fatigue. We consecutively screened forty-seven patients with de novo PD from 2012 to 2017 and enrolled 32 patients. The gray matter volumes, white matter tracts, and striatal dopaminergic activity between PD without fatigue and with fatigue were compared. The correlation between fatigue and striatal dopaminergic activity was also analyzed. Our data did not show any significant difference in gray matter volume between PD without fatigue and with fatigue (familywise error [FWE] corrected p > 0.05) but revealed significantly higher mean fractional anisotropy (FA) values for all analyzed white matter tracts in PD with fatigue (false discovery rate [FDR] corrected p < 0.05), except left cingulum-hippocampus (CH), right superior longitudinal fasciculus, and right longitudinal fasciculus temporal part (FDR corrected p > 0.06); lower mean diffusivity (MD) values for all analyzed white matter tracts in PD with fatigue (FDR corrected p < 0.05), except in the left CH and uncinate fasciculus (FDR corrected p > 0.05). The mean radial diffusivity (RD) values, except for the left CH (FDR corrected p = 0.0576), were also significantly lower (FDR corrected p < 0.05). There was no difference in dopaminergic deficits between PD without fatigue and PD with fatigue (p > 0.50). The alteration of the white matter tract may reflect the degree of fatigue in PD. This is not true of the gray matter and striatal dopaminergic activity. These results show the possibility that white matter changes can be used as a biomarker for fatigue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00702-019-02130-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!