Influence of different culture conditions on exopolysaccharide production by indigenous lactic acid bacteria isolated from pickles.

Arch Microbiol

Department of Food Engineering, Faculty of Engineering, Ankara University, 50.Yıl Campus, Bahçelievler Street, Gölbaşı, Ankara, Turkey.

Published: May 2020

The objective of this study was to assess the effects of some culture conditions [temperature (20, 30, 37 °C), incubation time (48, 72, 120 h), pH (5.0, 6.0, 7.0), NaCl concentration (0, 3, 6%), carbon (glucose, fructose, lactose), nitrogen (sodium nitrate, ammonium sulfate, bacto-peptone), and mineral sources (calcium carbonate, ferric chloride)] on the exopolysaccharide (EPS) production by lactic acid bacteria (LAB) strains (belonging to Lactobacillus (L.) plantarum, L. namurensis, and Pediococcus (P.) ethanolidurans species) isolated from naturally fermented pickles. The maximum EPS production was determined at 30 °C and pH 6.0. The highest amount of EPS was obtained after 120 h of incubation, with glucose as carbon source, bacto-peptone as nitrogen source and calcium carbonate as mineral source for most of the tested strains. The EPS formation was not stimulated by NaCl, indicating that EPS formation of the tested strains was not a stress response. L. plantarum MF460 produced the highest amount of EPS at 30 °C after 48 h of incubation, which was 515.48 mg/L. One of the most pronounced results of this study was that the EPS production of L. plantarum MF556 strain was increased up to 512.81 mg/L with the addition of calcium carbonate to MRS medium. The effect of different culture conditions, particularly of incubation time, carbon, nitrogen, and mineral sources, on the EPS production often vary depending on the strain. Therefore, these apparent strain specific results demonstrated that the optimum culture conditions for the enhanced EPS production should be specifically determined for each LAB strain.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-019-01799-6DOI Listing

Publication Analysis

Top Keywords

eps production
20
culture conditions
16
calcium carbonate
12
eps
9
lactic acid
8
acid bacteria
8
incubation time
8
mineral sources
8
production determined
8
highest amount
8

Similar Publications

Polysaccharides, found universally in all living-species, exhibit diverse biochemical structures and play crucial roles in microorganisms, animals, and plants to defend against pathogens, environmental stress and climate-changing. Microbial exopolysaccharides are essential for cell adhesion and stress resilience and using them has notable advantages over synthetic polysaccharides. Exopolysaccharides have versatile structures and physicochemical properties, used in food systems, therapeutics, cosmetics, agriculture, and polymer industries.

View Article and Find Full Text PDF

The wastewater from various industries contaminated with heavy metals poses significant environmental challenges. Biosorption has emerged as a widely used method for removing heavy metals from industrial wastewater. Pseudomonas atacamensis M7D1 is known to produce polysaccharides, but the potential of its polysaccharides as an adsorbent for heavy metal removal still needs to be explored.

View Article and Find Full Text PDF

Decipher syntrophies and adaptive response towards enhancing conversion of propionate to methane under psychrophilic condition.

Water Res

January 2025

Laboratory of Biomass Bio-chemical Conversion, Guang Zhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China. Electronic address:

Propionate is a key intermediate in anaerobic digestion (AD) under low operational temperatures, which can destabilize the process. In this study, the supplementation of syntrophic cold-tolerant consortia and trace elements significantly improved the performance of psychrophilic (20 °C) reactor, increasing methane production to 91 % of mesophilic reactor levels and reducing propionate concentrations to less than 2 % of those in untreated psychrophilic reactors. Multi-omics analyses revealed that psychrophilic conditions downregulated the methylmalonyl-CoA and aceticlastic methanogenesis pathways.

View Article and Find Full Text PDF

Bacteria, fungi, and algae are examples of microorganisms that synthesize polysaccharides, which are macromolecules that belong to the carbohydrate class. Production of polysaccharides represents an alternative to chemical and plant-derived compounds that could be used for human well-being which requires implementation of different methods standardized during the extraction and purification process. In the current investigation, Pseudolagarobasidium acaciicola, a novel fungal source of exopolysaccharide (EPS) was used which produced 2773.

View Article and Find Full Text PDF

In Vitro Cholesterol-Lowering Bioactivity, Synthetic Pathway, and Structural Characterization of Exopolysaccharide Synthesized by Z171.

J Agric Food Chem

January 2025

Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.

A strain identified as was isolated from Chinese sauerkraut, and its exopolysaccharide (EPS) exhibited excellent in vitro cholesterol-lowering bioactivity. Besides, the whole genome of this strain and the structure characteristics of the purified EPS were investigated in this study. Z171 presented a strong EPS production capacity, with five nucleotide sugar biosynthesis pathways regulated by an EPS synthesis gene cluster.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!