Cobalt Amide Imidate Imidazolate Frameworks as Highly Active Oxygen Evolution Model Materials.

ACS Appl Energy Mater

Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans, 16, 43007 Tarragona, Spain.

Published: December 2019

Two imidazolate-based Co-MOFs, IFP-5 and IFP-8 (imidazolate framework Potsdam), with a different peripheral group -R (-Me and -OMe, respectively) have been synthesized by a solvothermal method and tested toward the oxygen evolution reaction (OER). Remarkably, IFP-8 presents much lower overpotentials (319 mV at 10 mA/cm and 490 mV at 500 mA/cm) than IFP-5 toward OER, as confirmed by online gas chromatography measurements (Faradaic yield of O > 99%). Moreover, the system is extraordinarily stable during 120 h, even when used as a catalyst toward the overall water splitting reaction without any sign of fatigue. An integrated ex situ spectroscopic study, based on powder X-ray diffraction, extended X-ray absorption fine structure, and attenuated total reflection, allows the identification of the active species and the factors that determine the catalytic activity. Indeed, it was found that the performances are highly affected by the nature of the -R group, because this small change strongly influences the conversion of the initial metal organic framework to the active species. As a consequence, the remarkable activity of IFP-8 can be ascribed to the formation of Co(O)OH phase with a particle size of a few nanometers (3-10 nm) during the electrocatalytic oxygen evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6931241PMC
http://dx.doi.org/10.1021/acsaem.9b01977DOI Listing

Publication Analysis

Top Keywords

oxygen evolution
12
active species
8
cobalt amide
4
amide imidate
4
imidate imidazolate
4
imidazolate frameworks
4
frameworks highly
4
highly active
4
active oxygen
4
evolution model
4

Similar Publications

Manipulation of Surface Spin Configurations for Enhanced Performance in Oxygen Evolution Reactions.

Nano Lett

January 2025

Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, College of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.

studies of the relationship between surface spin configurations and spin-related electrocatalytic reactions are crucial for understanding how magnetic catalysts enhance oxygen evolution reaction (OER) performance under magnetic fields. In this work, 2D FeSe nanosheets with rich surface spin configurations are synthesized via chemical vapor deposition. magnetic force microscopy and Raman spectroscopy reveal that a 200 mT magnetic field eliminates spin-disordered domain walls, forming a spin-ordered single-domain structure, which lowers the OER energy barrier, as confirmed by theoretical calculations.

View Article and Find Full Text PDF

Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.

View Article and Find Full Text PDF

Bifunctional oxygen electrocatalysis is a pivotal process that underpins a diverse array of sustainable energy technologies, including electrolyzers and fuel cells. Metal selenides have been identified as highly promising candidates for oxygen electrocatalysts with electronic structure engineering that lies at the heart of catalyst design. Two-phase Fe-doped nitrogen carbon (NC)-supported nickel selenides were synthesized using a coordination polymer template.

View Article and Find Full Text PDF

The design of acidic oxygen evolution reaction (OER) electrocatalysts with high activity and durability is the key to achieving efficient hydrogen production. Herein, we report a Cr-doped RuO (RuCrO) catalyst that exhibits good OER activity in acidic electrolytes. The doping of Cr increases the valence state of Ru, which enhances the activity of the catalyst, and a current density of 10 mA cm can be achieved at only 235 mV, which is superior to that of unmodified RuO of 299 mV.

View Article and Find Full Text PDF

Over-oxidation of surface ruthenium active sites of RuO-based electrocatalysts leads to the formation of soluble high-valent Ru species and subsequent structural collapse of electrocatalysts, which results in their low stability for the acidic oxygen evolution reaction (OER). Herein, a binary RuO/NbO electrocatalyst with abundant and intimate interfaces has been rationally designed and synthesized to enhance its OER activity in acidic electrolyte, delivering a low overpotential of 179 mV at 10 mA cm, a small Tafel slope of 73 mV dec, and a stabilized catalytic durability over a period of 750 h. Extensive experiments have demonstrated that the spillover of active oxygen intermediates from RuO to NbO and the subsequent participation of lattice oxygen of NbO instead of RuO for the acidic OER suppressed the over-oxidation of surface ruthenium species and thereby improved the catalytic stability of the binary electrocatalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!