With the stationary solution assumption, we establish the connection between the nonlocal nonlinear Schrödinger (NNLS) equation and an elliptic equation. Then, we obtain the general stationary solutions and discuss the relevance of their smoothness and boundedness to some integral constants. Those solutions, which cover the known results in the literature, include the unbounded Jacobi elliptic-function and hyperbolic-function solutions, the bounded sn-, cn-, and dn-function solutions, as well as the hyperbolic soliton solutions. By the imaginary translation transformation of the NNLS equation, we also derive the complex-amplitude stationary solutions, in which all the bounded cases obey either the PT- or anti-PT-symmetric relation. In particular, the complex tanh-function solution can exhibit no spatial localization in addition to the dark- and antidark-soliton profiles, which is in sharp contrast with the common dark soliton. Considering the physical relevance to the PT-symmetric system, we show that the complex-amplitude stationary solutions can yield a wide class of complex and time-independent PT-symmetric potentials, and the symmetry breaking does not occur in the PT-symmetric linear system with the associated potentials.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5121776DOI Listing

Publication Analysis

Top Keywords

stationary solutions
16
general stationary
8
solutions
8
nonlocal nonlinear
8
nonlinear schrödinger
8
relevance pt-symmetric
8
pt-symmetric system
8
nnls equation
8
solutions bounded
8
complex-amplitude stationary
8

Similar Publications

Oligonucleotides (ONs) are an increasingly popular category of molecules in the pharmaceutical landscape, particularly attractive for the treatment of genetic and rare diseases. However, analyzing these molecules presents significant challenges, due to their highly hydrophilic nature, multiple negative charges, and the presence of closely related impurities resulting from the complex solid-phase synthesis process. Ion pairing reverse-phase liquid chromatography (IP-RPLC) is the preferred technique for ONs analysis but is not ideal for mass spectrometry (MS) coupling.

View Article and Find Full Text PDF

We present a nonlinear model of thermal field emission in resonant tunneling nanostructures with multiple barriers and potential wells, based on an accurate determination of the quantum potential shape and a rigorous solution of the Schrödinger equation, while considering thermal balance. The model applies to vacuum and semiconductor resonant tunnel diode and triode structures with two and three electrodes and to the general case of two-way tunneling with electrode heating. The complete balance of heat release and transfer is accounted for, with heat transport considered ballistic.

View Article and Find Full Text PDF

This paper introduces a novel approach for the offline estimation of stationary moving average processes, further extending it to efficient online estimation of non-stationary processes. The novelty lies in a unique technique to solve the autocorrelation function matching problem leveraging that the autocorrelation function of a colored noise is equal to the autocorrelation function of the coefficients of the moving average process. This enables the derivation of a system of nonlinear equations to be solved for estimating the model parameters.

View Article and Find Full Text PDF

Future climate projections are expected to have a substantial impact on boreal lake circulation regimes. Understanding lake sensitivity to warmer climates is therefore critical for mitigating potential ecological and societal impacts. The Holocene Thermal Maximum (HTM; ca 7-5 ka BP) provides a valuable analogue to investigate lake responses to warmer climates devoid of major anthropogenic influences.

View Article and Find Full Text PDF

A kinetic exchange model is developed to investigate wealth distribution in a market. The model incorporates a value function that captures the agents' psychological traits, governing their wealth allocation based on behavioral responses to perceived potential losses and returns. To account for the impact of transaction frequency on wealth dynamics, a non-Maxwellian collision kernel is introduced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!