Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Photochemical transformation driven by sunlight is one of the most important natural processes for organic contaminant attenuation. In the current study, statistical analysis-assisted high-resolution mass spectrometry was employed to investigate the phototransformation of nontarget features in wastewater effluents under various radical quenching/enhancing conditions. A total of 9694 nontarget features were extracted from the effluents, including photoresistant features, photolabile features, and transformation products. 65% of the wastewater effluent features were photoresistant, and the photolabile features could be classified into five groups: direct photolysis group (group I), HO-originated species-dominated group (group II), OM*-dominated group (group III), photochemically produced reactive intermediates combination-dominated group (group IV), and non-first-order degradation group (group V). The direct photolyzed features were observed to degrade significantly faster than the indirect photolyzed features. Moreover, group II dominated by HO-originated species contributed 34% to the photolabile features. The reaction types that occurred in the phototransformation process were analyzed by linkage analysis. The results suggested that oxygen addition and dealkyl group reactions were the most common reaction types identified in the phototransformation process. Overall, high-resolution mass spectrometry coupled with statistical analysis was applied here to understand the photochemical behavior of the unknown features in wastewater effluents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.9b04669 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!