The ability of commercial monolayer graphene oxide (GO) and graphene oxide nanocolloids (GOC) to interact with different unicellular systems and biomolecules was studied by analyzing the response of human alveolar carcinoma epithelial cells, the yeast and the bacteria to the presence of different nanoparticle concentrations, and by studying the binding affinity of different microbial enzymes, like the α-l-rhamnosidase enzyme RhaB1 from the bacteria and the AbG β-d-glucosidase from sp. (strain ATCC 21400). An analysis of cytotoxicity on human epithelial cell line A549, (colony forming units, ROS induction, genotoxicity) and (luminescence inhibition) cells determined the potential of both nanoparticle types to damage the selected unicellular systems. Also, the protein binding affinity of the graphene derivatives at different oxidation levels was analyzed. The reported results highlight the variability that can exist in terms of toxicological potential and binding affinity depending on the target organism or protein and the selected nanomaterial.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982217 | PMC |
http://dx.doi.org/10.3390/ijms21010205 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!