A novel electrochemical sensor based on ion imprinted polymer and gold nanomaterials for nitrite ion analysis in exhaled breath condensate.

Talanta

Sensor Electronic & Instrumentation Group, Department of Physics, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, Meknes, Morocco. Electronic address:

Published: March 2020

Human Exhaled Breath Condensate (EBC) contains markers of several inflammatory diseases. Its analysis is of interest to a number of researchers. Nitrite ions (NO-), which are widely used in our daily lives, are nevertheless among these indicators. In this study, a simple, fast, portable, non-invasive and cheap electrochemical sensor is developed for the analysis of the nitrite profile in EBC. In this regard, sodium nitrite (NaNO) was first immobilized on self-assembled 2-aminothiophenol (2-ATP) on a screen-printed gold electrode (Au-SPE). Then, a polymer matrix composed of polyvinyl alcohol (PVA) crosslinked with glutaraldehyde (GA) was combined with gold nanoparticles (Au-NPs) to cover the modified Au-SPE and complete the fabrication of the Ion Imprinted Polymer (IIP) sensor. The electrochemical behaviour of the sensor was monitored using Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and Differential Pulse Voltammetry (DPV) methods, while the morphology and chemical composition of its layers were observed by infrared Fourier transform (FTIR), Atomic Force Microscopy (AFM) and Scanning Electron Microscopy coupled with energy dispersion X-Ray spectroscopy (SEM-EDS) techniques. In addition, after a successful control test using a Non-Imprinted Ion Polymer (NIIP) sensor, the obtained results demonstrated satisfactory sensitivity and selectivity to nitrite compared to co-existing interfering substances in EBC, such as nitrate, acetate and ammonium nitrate. Under improved experimental conditions, the nitrite IIP sensor exhibits responses proportional to nitrite concentrations (R = 0.96) over a concentration range of 0.5-50 μg mL with a detection limit (LOD) of 4 μmol L (signal-to-noise ratio S/N = 3). The proposed approach was well applied for the nitrite determination in EBC samples with a relative standard deviation (RSD = 4%) and could open clinical applications in respiratory medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2019.120577DOI Listing

Publication Analysis

Top Keywords

electrochemical sensor
8
ion imprinted
8
imprinted polymer
8
nitrite
8
exhaled breath
8
breath condensate
8
iip sensor
8
sensor
6
novel electrochemical
4
sensor based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!