Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Conservation practitioners are increasingly looking to species translocations as a tool to recover imperiled taxa. Quantitative predictions of where animals are likely to move when released into new areas would allow managers to better address the social, institutional, and ecological dimensions of conservation translocations. Using >5 million California condor (Gymnogyps californianus) occurrence locations from 75 individuals, we developed and tested circuit-based models to predict condor movement away from release sites. We found that circuit-based models of electrical current were well calibrated to the distribution of condor movement data in southern and central California (continuous Boyce Index = 0.86 and 0.98, respectively). Model calibration was improved in southern California when additional nodes were added to the circuit to account for nesting and feeding areas, where condor movement densities were higher (continuous Boyce Index = 0.95). Circuit-based projections of electrical current around a proposed release site in northern California comported with the condor's historical distribution and revealed that, initially, condor movements would likely be most concentrated in northwestern California and southwest Oregon. Landscape linkage maps, which incorporate information on landscape resistance, complement circuit-based models and aid in the identification of specific avenues for population connectivity or areas where movement between populations may be constrained. We found landscape linkages in the Coast Range and the Sierra Nevada provided the most connectivity to a proposed reintroduction site in northern California. Our methods are applicable to conservation translocations for other species and are flexible, allowing researchers to develop multiple competing hypotheses when there are uncertainties about landscape or social attractants, or uncertainties in the landscape conductance surface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938332 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226491 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!