Auditory prediction error responses elicited by surprising sounds can be reliably recorded with musical stimuli that are more complex and realistic than those typically employed in EEG or MEG oddball paradigms. However, these responses are reduced as the predictive uncertainty of the stimuli increases. In this study, we investigate whether this effect is modulated by musical expertise. Magnetic mismatch negativity (MMNm) responses were recorded from 26 musicians and 24 non-musicians while they listened to low- and high-uncertainty melodic sequences in a musical multi-feature paradigm that included pitch, slide, intensity and timbre deviants. When compared to non-musicians, musically trained participants had significantly larger pitch and slide MMNm responses. However, both groups showed comparable reductions in pitch and slide MMNm amplitudes in the high-uncertainty condition compared with the low-uncertainty condition. In a separate, behavioural deviance detection experiment, musicians were more accurate and confident about their responses than non-musicians, but deviance detection in both groups was similarly affected by the uncertainty of the melodies. In both experiments, the interaction between uncertainty and expertise was not significant, suggesting that the effect is comparable in both groups. Consequently, our results replicate the modulatory effect of predictive uncertainty on prediction error; show that it is present across different types of listeners; and suggest that expertise-related and stimulus-driven modulations of predictive precision are dissociable and independent.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ejn.14667DOI Listing

Publication Analysis

Top Keywords

prediction error
12
predictive uncertainty
12
pitch slide
12
error responses
8
responses reduced
8
reduced predictive
8
musicians non-musicians
8
mmnm responses
8
slide mmnm
8
deviance detection
8

Similar Publications

Background: Chronic kidney disease (CKD) represents a significant public health challenge, with rates consistently on the rise. Enhancing kidney function prediction could contribute to the early detection, prevention, and management of CKD in clinical practice. We aimed to investigate whether deep learning techniques, especially those suitable for processing missing values, can improve the accuracy of predicting future renal function compared to traditional statistical method, using the Japan Chronic Kidney Disease Database (J-CKD-DB), a nationwide multicenter CKD registry.

View Article and Find Full Text PDF

Positive end-expiratory pressure (PEEP) improves respiratory conditions. However, the complex interaction between PEEP and hemodynamics in heart failure patients makes it challenging to determine appropriate PEEP settings. In this study, we developed a framework for the impact of PEEP on hemodynamics considering cardiac function, by integrating the impact of PEEP in the generalized circulatory equilibrium framework, and validated the framework by assessing its ability to accurately predict PEEP-induced hemodynamics.

View Article and Find Full Text PDF

A Serial MRI-based Deep Learning Model to Predict Survival in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma.

Radiol Artif Intell

January 2025

From the Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, P. R. China (J.K., C.F.W., Z.H.C., G.Q.Z., Y.Q.W., L.L., Y.S.); Department of Radiation Therapy, Nanhai People's Hospital, The Sixth Affiliated Hospital, South China University of Technology, Foshan, China (J.Y.P., L.J.L.); and Department of Electronic Engineering, Information School, Yunnan University, Kunming, China (W.B.L.).

Purpose To develop and evaluate a deep learning-based prognostic model for predicting survival in locoregionally- advanced nasopharyngeal carcinoma (LA-NPC) using serial MRI before and after induction chemotherapy (IC). Materials and Methods This multicenter retrospective study included 1039 LA-NPC patients (779 male, 260 female, mean age 44 [standard deviation: 11]) diagnosed between April 2009 and December 2015. A radiomics- clinical prognostic model (Model RC) was developed using pre-and post-IC MRI and other clinical factors using graph convolutional neural networks (GCN).

View Article and Find Full Text PDF

Background: Dosimetric commissioning and quality assurance (QA) for linear accelerators (LINACs) present a significant challenge for clinical physicists due to the high measurement workload and stringent precision standards. This challenge is exacerbated for radiosurgery LINACs because of increased measurement uncertainty and more demanding setup accuracy for small-field beams. Optimizing physicists' effort during beam measurements while ensuring the quality of the measured data is crucial for clinical efficiency and patient safety.

View Article and Find Full Text PDF

Refractive error maps: A predictive tool for refractive error progression.

Ophthalmic Physiol Opt

January 2025

Faculty of Health, Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, UK.

Purpose: To investigate the influence of axial length on different ocular parameters and create a predictive tool for refractive error progression.

Methods: Two eye models were used to simulate refractive errors, namely the Liou-Brennan and the Goncharov-Dainty. Both models were simulated using Zemax OpticStudio.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!