Noninvasive dual-imaging methods that provide an early readout on tumor permissiveness to virus infection and tumor cell death could be valuable in optimizing development of oncolytic virotherapies. Here, we have used the sodium iodide symporter (NIS) and I radiotracer to detect infection and replicative spread of an oncolytic vesicular stomatitis virus (VSV) in VSV-susceptible (MPC-11 tumor) versus VSV-resistant (CT26 tumor) tumors in BALB/c mice. In conjunction, tumor cell death was imaged simultaneously using technetium (Tc)-duramycin that binds phosphatidylethanolamine in apoptotic and necrotic cells. Dual-isotope single-photon emission computed tomography/computed tomography (SPECT/CT) imaging showed areas of virus infection (NIS and I), which overlapped well with areas of tumor cell death (Tc-duramycin imaging) in susceptible tumors. Multiple infectious foci arose early in MPC-11 tumors, which rapidly expanded throughout the tumor parenchyma over time. There was a dose-dependent increase in numbers of infectious centers and Tc-duramycin-positive areas with viral dose. In contrast, NIS or duramycin signals were minimal in VSV-resistant CT26 tumors. Combinatorial use of NIS and Tc-duramycin SPECT imaging for simultaneous monitoring of oncolytic virotherapy (OV) spread and the presence or absence of treatment-associated cell death could be useful to guide development of combination treatment strategies to enhance therapeutic outcome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6931109PMC
http://dx.doi.org/10.1016/j.omto.2019.10.002DOI Listing

Publication Analysis

Top Keywords

cell death
16
virus infection
12
tumor cell
12
spect imaging
8
tumor
8
vsv-resistant ct26
8
nis
5
dual-isotope spect
4
imaging
4
imaging nis
4

Similar Publications

Purpose: To investigate potential modes of programmed cell death in the lens epithelial cells (LECs) of patients with early age-related cortical cataract (ARCC) and to explore early-stage intervention strategies.

Methods: Anterior lens capsules were collected from early ARCC patients for comprehensive analysis. Ultrastructural examination of LECs was performed using transmission electron microscopy.

View Article and Find Full Text PDF

Background: Modulation of protein synthesis according to the physiological cues is maintained through tight control of Eukaryotic Elongation Factor 2 (eEF2), whose unique translocase activity is essential for cell viability. Phosphorylation of eEF2 at its Thr56 residue inactivates this function in translation. In our previous study we reported a novel mode of post-translational modification that promotes higher efficiency in T56 phosphorylation.

View Article and Find Full Text PDF

Preserving fertility is important in men under radiation therapy because healthy cells are also affected by radiation. Supplementation with antioxidants is a controversial issue in this process. Designing a biocompatible delivery system containing hydrophobic antioxidants to release control may solve these disagreements.

View Article and Find Full Text PDF

This study investigated tempol action on genes and miRNAs related to NFκB pathway in androgen dependent or independent cell lines and in TRAMP model in the early and late-stages of cancer progression. A bioinformatic search was conducted to select the miRNAs to be measured based on the genes of interest from NFκB pathway. The miR-let-7c-5p, miR-26a-5p and miR-155-5p and five target genes (BCL2, BCL2L1, RELA, TNF, PTGS2) were chosen for RT-PCR and gene enrichment analyses.

View Article and Find Full Text PDF

Two features of macrophages make them attractive for targeted transport of drugs: they efficiently take up a broad spectrum of nanoparticles (NPs) and, by sensing cytokine gradients, they are attracted to the sites of infection and inflammation. To expand the potential of macrophages as drug carriers, we investigated whether macrophages could be simultaneously coloaded with different types of nanoparticles, thus equipping individual cells with different functionalities. We used superparamagnetic iron oxide NPs (SPIONs), which produce apoptosis-inducing hyperthermia when exposed to an alternating magnetic field (AMF), and co-loaded them on macrophages together with drug-containing NPs (inorganic-organic nanoparticles (IOH-NPs) or mesoporous silica NPs (MSNs)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!