In the years of personalized (or precision) medicine the 'omics' methodologies in biomedical sciences-genomics, transcriptomics, proteomics and metabolomics-are helping researchers to detect quantifiable biological characteristics, or biomarkers, that will best define the human physiology and pathologies. Proteomics use high throughput and high efficiency approaches with the support of bioinformatic tools in order to identify and quantify the total protein content of cells, tissues or biological fluids. Saliva receives a lot of attention as a rich biological specimen that offers a number of practical and physiological advantages over blood and other biological fluids in monitoring human health. The aim of this review is to present the latest advances in saliva proteomics for biomedicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6909541 | PMC |
http://dx.doi.org/10.1186/s40709-019-0109-7 | DOI Listing |
Biomolecules
December 2024
Institute of Biomedical Chemistry, 109028 Moscow, Russia.
Metabolomics investigates final and intermediate metabolic products in cells. Assessment of the human metabolome relies principally on the analysis of blood, urine, saliva, sweat, and feces. Tissue biopsy is employed less frequently.
View Article and Find Full Text PDFProteomics
December 2024
Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany.
Periodontitis, characterized by inflammatory loss of tooth-supporting tissues associated with biofilm, is among the most prevalent chronic diseases globally, affecting approximately 50% of the adult population to a moderate extent and cases of severe periodontitis surpassing the one billion mark. Proteomics analyses of blood, serum, and oral fluids have provided valuable insights into the complex processes occurring in the inflamed periodontium. However, until now, proteome analyses have been primarily limited to small groups of diseased versus healthy individuals.
View Article and Find Full Text PDFProteomics Clin Appl
December 2024
Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Košice, Slovakia.
Purpose: During COVID-19, significant changes in protein abundance can be linked with disease-related processes. The mass spectrometry-based proteomics of COVID-19-related biomarkers can help with the prognosis and diagnosis of this severe disease.
Design: Here, we surveyed scientific works in terms of proteomic analysis of solid tissues and non-blood fluids from COVID-19 patients.
Sci Rep
December 2024
Sys2Diag, UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, 1682 Rue de la Valsière, CS 40182, 34184, Montpellier Cedex 4, France.
Extracellular vesicles (EVs), crucial mediators in cell-to-cell communication, are implicated in both homeostatic and pathological processes. Their detectability in easily accessible peripheral fluids like saliva positions them as promising candidates for non-invasive biomarker discovery. However, the lack of standardized methods for salivary EVs isolation greatly limits our ability to study them.
View Article and Find Full Text PDFSci China Life Sci
December 2024
State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
Salivary proteins serve multifaceted roles in maintaining oral health and hold significant potential for diagnosing and monitoring diseases due to the non-invasive nature of saliva sampling. However, the clinical utility of current saliva biomarker studies is limited by the lack of reference intervals (RIs) to correctly interpret the testing result. Here, we developed a rapid and robust saliva proteome profiling workflow, obtaining coverage of >1,200 proteins from a 50-µL unstimulated salivary flow with 30 min gradients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!