Study design Biomechanical cadaveric study Objective To compare biomechanical properties of a single stand-alone interbody fusion and a single-level pedicle screw construct above a previous lumbar pedicle fusion. Summary of background data Adjacent segment disease (ASD) is spondylosis of adjacent vertebral segments after previous spinal fusion. Despite the consensus that ASD is clinically significant, the surgical treatment of ASD is controversial. Methods Lateral lumbar interbody fusion (LLIF) and posterior spinal fusion (PSF) with pedicle screws were analyzed within a validated cadaveric lumbar fusion model. L3-4 vertebral segment motion was analyzed within the following simulations: without implants (intact), L3-4 LLIF-only, L3-4 LLIF with previous L4-S1 PSF, L3-4 PSF with previous L4-S1 PSF, and L4-S1 PSF alone. L3-4 motion values were measured during flexion/extension with and without axial load, side bending, and axial rotation. Results L3-4 motion in the intact model was found to be 4.7 ± 1.2 degrees. L3-4 LLIF-only decreased motion to 1.9 ± 1.1 degrees. L3-4 LLIF with previous L4-S1 fusion demonstrated less motion in all planes with and without loading (p < 0.05) compared to an intact spine. However, L3-4 motion with flexion/extension and lateral bending was noted to be greater compared to the L3-S1 construct (p < 0.5). The L3-S1 PSF construct decreased motion to less than 1° in all planes of motion with or without loading (p < 0.05). The L3-4 PSF with previous L4-S1 PSF constructs decreased the flexion/extension motion by 92.4% compared to the intact spine, whereas the L3-4 LLIF with previous L4-S1 PSF constructs decreased motion by 61.2%. Conclusions Stand-alone LLIF above a previous posterolateral fusion significantly decreases motion at the adjacent segment, demonstrating its utility in treating ASD without necessitating revision. The stand-alone LLIF is a biomechanically sound option in the treatment of ASD and is advantageous in patient populations who may benefit from less invasive surgical options.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925380 | PMC |
http://dx.doi.org/10.7759/cureus.6208 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!