Engineered KT2440 co-utilizes galactose and glucose.

Biotechnol Biofuels

1Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.

Published: December 2019

Background: Efficient conversion of plant biomass to commodity chemicals is an important challenge that needs to be solved to enable a sustainable bioeconomy. Deconstruction of biomass to sugars and lignin yields a wide variety of low molecular weight carbon substrates that need to be funneled to product. KT2440 has emerged as a potential platform for bioconversion of lignin and the other components of plant biomass. However, is unable to natively utilize several of the common sugars in hydrolysate streams, including galactose.

Results: In this work, we integrated a De Ley-Doudoroff catabolic pathway for galactose catabolism into the chromosome of KT2440, using genes from several different organisms. We found that the galactonate catabolic pathway alone (DgoKAD) supported slow growth of on galactose. Further integration of genes to convert galactose to galactonate and to optimize the transporter expression level resulted in a growth rate of 0.371 h. Additionally, the best-performing strain was demonstrated to co-utilize galactose with glucose.

Conclusions: We have engineered to catabolize galactose, which will allow future engineered strains to convert more plant biomass carbon to products of interest. Further, by demonstrating co-utilization of glucose and galactose, continuous bioconversion processes for mixed sugar streams are now possible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927180PMC
http://dx.doi.org/10.1186/s13068-019-1627-0DOI Listing

Publication Analysis

Top Keywords

plant biomass
12
catabolic pathway
8
galactose
7
engineered kt2440
4
kt2440 co-utilizes
4
co-utilizes galactose
4
galactose glucose
4
glucose background
4
background efficient
4
efficient conversion
4

Similar Publications

Cold-temperate and Arctic hard bottom coastal ecosystems are dominated by kelp forests, which have a high biomass production and provide important ecosystem services, but are subject to change due to ocean warming. However, the photophysiological response to increasing temperature of ecologically relevant species, such as Laminaria digitata, might depend on the local thermal environment where the population has developed. Therefore, the effects of temperature on growth rate, biochemical composition, maximum quantum yield, photosynthetic quotient and carbon budget of young cultured sporophytes of Laminaria digitata from the Arctic at Spitsbergen (SPT; cultured at 4, 10 and 16 °C) and from the cold-temperate North Sea island of Helgoland (HLG; cultured at 10, 16 and 22 °C) were comparatively analyzed.

View Article and Find Full Text PDF

Effect of transgene on salt tolerance of tobacco.

Transgenic Res

January 2025

Forest Department, College of Forestry, Hebei Agricultural University, Baoding, 071000, China.

To explore the effects of salt-tolerance gene accumulation on salt tolerance in transgenic plant, we used four types of plant expression vector (N27, N28, N29, and N30) carrying mtlD, mtlD + gutD, mtlD + gutD + BADH, mtlD + gutD + BADH + sacB genes respectively, to transform tobacco through Agrobacterium-mediated method. Transgenic lines were identified through polymerase chain reaction (PCR) detection. Transgenic lines and non-transgenic plant (CK) were subjected to 6‰ sodium chloride solution stress; then, fluorescence quantitative PCR (FQ-PCR) and salt tolerance indexes were used to assess characteristics.

View Article and Find Full Text PDF

Predicting the spatial and temporal responses of species exhibiting intraguild predation (IGP) relationships is difficult due to variation in potential interactions and environmental context. Eurasian badgers () are intraguild predators of European hedgehogs () and are implicated in their population decline via both direct predation and competition for shared food resources. Previous studies have shown spatial separation between these species and attributed this to hedgehogs experiencing a 'landscape of fear', but little is known about the potential role of differential habitat use.

View Article and Find Full Text PDF

To enhance plant biomass production under low nitrogen conditions, we employed a method to artificially and temporarily accumulate the bacterial second messenger, guanosine tetraphosphate (ppGpp), to modify plastidial or mitochondrial metabolism. Specifically, we fused a chloroplast or mitochondrial transit-peptide to the N-terminus of the bacterial ppGpp synthase YjbM, which was conditionally expressed by an estrogen-inducible promoter in . The resulting recombinant plants exhibited estrogen-dependent ppGpp accumulation in chloroplasts or mitochondria and showed reduced fresh weight compared to wild type (WT) plants when grown on agar-solidified plates containing a certain amount of estrogen.

View Article and Find Full Text PDF

Background: is an important cash crop in southwestern China, with soil organic carbon playing a vital role in soil fertility, and microorganisms contributing significantly to nutrient cycling, thus both of them influencing tea tree growth and development. However, existing studies primarily focus on soil organic carbon, neglecting carbon fractions, and the relationship between soil organic carbon fractions and microbial communities is unclear. Consequently, this study aims to clarify the impact of different tea planting durations on soil organic carbon fractions and microbial communities and identify the main factors influencing microbial communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!