Labeling of large RNAs with reporting entities, e.g., fluorophores, has significant impact on RNA studies in vitro and in vivo. Here, we describe a minimally invasive RNA labeling method featuring nucleotide and position selectivity, which solves the long-standing challenge of how to achieve accurate site-specific labeling of large RNAs with a least possible influence on folding and/or function. We use a custom-designed reactive DNA strand to hybridize to the RNA and transfer the alkyne group onto the targeted adenine or cytosine. Simultaneously, the 3'-terminus of RNA is converted to a dialdehyde moiety under the experimental condition applied. The incorporated functionalities at the internal and the 3'-terminal sites can then be conjugated with reporting entities via bioorthogonal chemistry. This method is particularly valuable for, but not limited to, single-molecule fluorescence applications. We demonstrate the method on an RNA construct of 275 nucleotides, the btuB riboswitch of Escherichia coli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-0231-7_16 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!