A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Real-Time Fluorescence-Based Approaches to Disentangle Mechanisms of a Protein's RNA Chaperone Activity. | LitMetric

Real-Time Fluorescence-Based Approaches to Disentangle Mechanisms of a Protein's RNA Chaperone Activity.

Methods Mol Biol

Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany.

Published: June 2021

RNA-binding proteins with an RNA chaperone activity exert either one or both of the following catalytic activities: (1) RNA annealing, i.e., the protein supports intra- as well as intermolecular RNA-RNA interactions and (2) strand displacement, i.e., the protein mediates the exchange of individual strands of a preexisting RNA duplex. To discriminate and further characterize these activities, it requires defined assay systems. These are based on entirely or partially complementary RNA oligonucleotides that are labeled with fluorescent and/or quencher dyes. The non-catalyzed and the protein-supported associations of the RNA molecules are followed by a real-time fluorescence resonance energy transfer (FRET) system. By site-specific modification of the RNAs or the protein, the substrate- and protein-specific parameters of the RNA chaperone activity can be explored and identified.In this chapter, we present strategies on the design of labeled RNA molecules to be used to characterize the activities of an RNA-binding protein and explain how to monitor progress curves of RNA annealing and strand displacement reactions in single cuvette or well-plate scales. We provide sets of equations and models to determine and analyze different types of reactions, e.g., by calculation of first- and second-order rate constants. Likewise, we demonstrate how to exploit these simple experimental setups to elucidate elementary principles of the reaction mechanisms performed by the protein of interest by applying basic kinetic applications, such as ARRHENIUS and linear free energy relationship analyses. These approaches will be explained by providing example plots and graphs from experiments investigating the RNA chaperone activities of the RNA-binding proteins NF90-NF45 and AUF1 p45.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-0231-7_5DOI Listing

Publication Analysis

Top Keywords

rna chaperone
16
chaperone activity
12
rna
10
rna-binding proteins
8
rna annealing
8
strand displacement
8
characterize activities
8
rna molecules
8
activities rna-binding
8
protein
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!