A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modification of asphalt mixtures for cold regions using microencapsulated phase change materials. | LitMetric

Modification of asphalt mixtures for cold regions using microencapsulated phase change materials.

Sci Rep

Empa, Swiss Federal Laboratories for Material Science and Technology, CH-8600, Dübendorf, Switzerland.

Published: December 2019

Phase change materials (PCMs) may be used to regulate the temperature of road surfaces to avoid low-temperature damages when asphalt materials become brittle and prone to cracking. With this in mind, different asphalt mixtures were modified with microencapsulated phase change materials (i.e. tetradecane) to assess their thermal benefits during the phase change process. Likewise, the effect on the mechanical performance of PCMs as a replacement of mineral filler was assessed. Special attention was paid to dry and wet modification processes for incorporating the PCMs into the mixtures. The results showed that PCM modifications are indeed able to slow down cooling and affect temperatures below zero. Approximately, a maximum of 2.5 °C offset was achieved under the tested cooling conditions compared to the unmodified reference specimens. Regarding the mechanical response at 0 °C and 10 °C, the results indicated that the PCM modification significantly reduces the stiffness of the material in comparison with the values obtained for the reference mixture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6937313PMC
http://dx.doi.org/10.1038/s41598-019-56808-xDOI Listing

Publication Analysis

Top Keywords

phase change
16
change materials
12
asphalt mixtures
8
microencapsulated phase
8
modification asphalt
4
mixtures cold
4
cold regions
4
regions microencapsulated
4
phase
4
change
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!