Although challenging, assembling and orienting non-spherical nanomaterials into two- and three-dimensional (2D and 3D) ordered arrays can facilitate versatile collective properties by virtue of their shape-dependent properties that cannot be realized with their spherical counterparts. Here, we report on the self-assembly of gold nanorods (AuNRs) into 2D films at the vapor/liquid interface facilitated by grafting them with poly(ethylene glycol) (PEG). Using surface sensitive synchrotron grazing incidence small angle X-ray scattering (GISAXS) and specular X-ray reflectivity (XRR), we show that PEG-AuNRs in aqueous suspensions migrate to the vapor/liquid interface in the presence of salt, forming a uniform monolayer with planar-to-surface orientation. Furthermore, the 2D assembled PEG functionalized AuNRs exhibit short range order into rectangular symmetry with side-by-side and tail-to-tail nearest-neighbor packing. The effect of PEG chain length and salt concentration on the 2D assembly are also reported.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6937238 | PMC |
http://dx.doi.org/10.1038/s41598-019-56730-2 | DOI Listing |
Nanoscale
January 2025
Sorbonne Université, MONARIS, CNRS-UMR 8233, 4 Place Jussieu, F-75005 Paris, France.
Developing chiral plasmonic nanostructures represents a significant scientific challenge due to their multidisciplinary potential. Observations have revealed that the dichroic behavior of metal plasmons changes when chiral molecules are present in the system, offering promising applications in various fields such as nano-optics, asymmetric catalysis, polarization-sensitive photochemistry and molecular detection. In this study, we explored the synthesis of plasmonic gold nanoparticles and the role of cysteine in their chiroplasmonic properties.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China. Electronic address:
Traditional cancer therapies, such as chemotherapy, often lack specificity, resulting in severe toxic side effects and limited therapeutic efficacy. There is an urgent need to develop innovative multifunctional nanomedicine carriers that integrate precise diagnosis, targeted therapy, real-time monitoring, and the synergistic effects of multiple therapeutic approaches. In this study, a composite nanodrug delivery system (GO-HA-Ce6-GNRs) based on graphene oxide (GO) was innovatively prepared, which was functionalized with the targeting molecule hyaluronic acid (HA), the photosensitizer chlorin e6 (Ce6), and the photothermal material gold nanorods (GNRs).
View Article and Find Full Text PDFMikrochim Acta
December 2024
Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
A novel detection technique is introduced that offers sensitive and reliable ochratoxin A (OTA) detection. The method leverages the etching of gold nanorods (AuNRs) stabilized by hexadecyl trimethyl ammonium bromide (CTAB) using the oxidized form of 3,3',5,5'-tetramethyl benzidine sulfate (TMB), creating a susceptible multicolor visual detection system for OTA. The visual detection is enabled by Mg-assisted DNAzyme catalysis combined with the catalytic hairpin assembly (CHA) signal amplification strategy.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland.
Bacterial infections can lead to severe complications that adversely affect wound healing. Thus, the development of effective wound dressings has become a major focus in the biomedical field, as current solutions remain insufficient for treating complex, particularly chronic wounds. Designing an optimal environment for healing and tissue regeneration is essential.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Materials Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382055, India.
Nanoparticles have been of significant interest in various biomedical domains such as drug delivery, gene delivery, cytotoxicity analysis, and imaging. Despite the synthesis of a variety of nanoparticles, their cellular uptake efficiency remains a substantial obstacle, with only a small fraction of delivered nanoparticles (NPs) have been reported to traverse the cell membrane within 24 h. Consequently, higher doses are often necessitated, leading to increased toxicity concerns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!