Objective: Obesity is associated with microvascular insulin resistance, which is characterized by impaired insulin-mediated microvascular recruitment. Glucagon-like peptide 1 (GLP-1) recruits skeletal and cardiac muscle microvasculature, and this action is preserved in insulin-resistant rodents. We aimed to examine whether GLP-1 recruits microvasculature and improves the action of insulin in obese humans.

Research Design And Methods: Fifteen obese adults received intravenous infusion of either saline or GLP-1 (1.2 pmol/kg/min) for 150 min with or without a euglycemic insulin clamp (1 mU/kg/min) superimposed over the last 120 min. Skeletal and cardiac muscle microvascular blood volume (MBV), flow velocity and blood flow, brachial artery diameter and blood flow, and pulse wave velocity (PWV) were determined.

Results: Insulin failed to change MBV or flow in either skeletal or cardiac muscle, confirming the presence of microvascular insulin resistance. GLP-1 infusion alone increased MBV by ∼30% and ∼40% in skeletal and cardiac muscle, respectively, with no change in flow velocity, leading to a significant increase in microvascular blood flow in both skeletal and cardiac muscle. Superimposition of insulin to GLP-1 infusion did not further increase MBV or flow in either skeletal or cardiac muscle but raised the steady-state glucose infusion rate by ∼20%. Insulin, GLP-1, and GLP-1 + insulin infusion did not alter brachial artery diameter and blood flow or PWV. The vasodilatory actions of GLP-1 are preserved in both skeletal and cardiac muscle microvasculature, which may contribute to improving metabolic insulin responses and cardiovascular outcomes.

Conclusions: In obese humans with microvascular insulin resistance, GLP-1's vasodilatory actions are preserved in both skeletal and cardiac muscle microvasculature, which may contribute to improving metabolic insulin responses and cardiovascular outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7035589PMC
http://dx.doi.org/10.2337/dc19-1465DOI Listing

Publication Analysis

Top Keywords

skeletal cardiac
36
cardiac muscle
36
muscle microvasculature
16
insulin resistance
16
blood flow
16
vasodilatory actions
12
preserved skeletal
12
insulin
12
microvascular insulin
12
mbv flow
12

Similar Publications

Thymic mimetic cells are molecular hybrids between medullary-thymic-epithelial cells (mTECs) and diverse peripheral cell types. They are involved in eliminating autoreactive T cells and can perform supplementary functions reflective of their peripheral-cell counterparts. Current knowledge about mimetic cells derives largely from mouse models.

View Article and Find Full Text PDF

The long-lasting impact of high-intensity training via collaborative care in patients with schizophrenia: A 5-year follow-up study.

Schizophr Res

December 2024

Faculty of Health Sciences and Social Care, Molde University College, Molde, Norway; Department of Psychosis and Rehabilitation, Psychiatry Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway. Electronic address:

Unlabelled: Although exercise is medicine for outpatients with schizophrenia, it is unclear if one-year adherence-supported exercise leads to a "tipping point", at which the exercise becomes a routine manifested as life-long training in the patient group.

Methods: Forty-eight outpatients (28 men/20 women: 35 ± 11 (mean ± SD) years) with schizophrenia (ICD-10: F20-29) were randomised to: 1) collaborative care group (TG), performing aerobic interval (AIT; 4 × 4-min treadmill walking/running at ∼90 % peak heart rate) and leg press maximal strength training (MST; 4 × 4 repetitions at ∼90 % maximal strength [1RM]) 2d·wk. for 1-year, supported by transportation and training supervision; or 2) control group (CG).

View Article and Find Full Text PDF

Barth syndrome (BTHS) is a rare, infantile-onset, X-linked mitochondriopathy exhibiting a variable presentation of failure to thrive, growth insufficiency, skeletal myopathy, neutropenia, and heart anomalies due to mitochondrial dysfunction secondary to inherited TAFAZZIN transacetylase mutations. Although not reported in BTHS patients, male infertility is observed in several () mouse alleles and in a mutant. Herein, we examined the male infertility phenotype in a BTHS-patient-derived point-mutant knockin mouse () allele that expresses a mutant protein lacking transacetylase activity.

View Article and Find Full Text PDF

Genetic characterization of diagnostic epitopes of cardiac troponin I in African rhinoceros.

J Vet Diagn Invest

December 2024

Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, Onderstepoort, South Africa.

African rhinoceros undergo chemical immobilization and prolonged transport during translocations for conservation purposes and, hence, experience several pathophysiologic changes, including skeletal muscle injury. Potential concurrent myocardial injury has not been investigated due to a lack of validated immunoassays. We aimed to use inferred cardiac troponin I (cTnI) amino acid sequences of southern white () and southern-central black () rhinoceros to assess the potential usefulness of several commercial cTnI immunoassays for detecting cTnI in African rhinoceros.

View Article and Find Full Text PDF

Fatty acid binding protein 4 (FABP4) is highly expressed in adipocytes. Lipolysis, caused by an elevated adrenergic input, has been suggested to contribute to elevated serum FABP4 levels in patients with cardiovascular diseases. However, the relationship between the serum FABP4 and efferent sympathetic nerve activity remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!