Magnetic Domain Wall Based Synaptic and Activation Function Generator for Neuromorphic Accelerators.

Nano Lett

Department of Electrical Engineering and Computer Science , Massachusetts Institute of Technology, Cambridge , Massachusetts 02139 , United States.

Published: February 2020

Magnetic domain walls are information tokens in both logic and memory devices and hold particular interest in applications such as neuromorphic accelerators that combine logic in memory. Here, we show that devices based on the electrical manipulation of magnetic domain walls are capable of implementing linear, as well as programmable nonlinear, functions. Unlike other approaches, domain-wall-based devices are ideal for application to both synaptic weight generators and thresholding in deep neural networks. Prototype micrometer-size devices operate with 8 ns current pulses and the energy consumption required for weight modulation is ≤16 pJ. Both speed and energy consumption compare favorably to other synaptic nonvolatile devices, with the expected energy dissipation for scaled 20 nm devices close to that of biological neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.9b04200DOI Listing

Publication Analysis

Top Keywords

magnetic domain
12
neuromorphic accelerators
8
domain walls
8
logic memory
8
memory devices
8
energy consumption
8
devices
6
domain wall
4
wall based
4
based synaptic
4

Similar Publications

Noncollinear Magnetic Configurations in Frustrated Magnets.

ACS Appl Mater Interfaces

January 2025

School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.

The exploration of materials with nanoscale noncollinear configurations has been continuously attracting attention due to the prospective applications in high-performance magnetic devices. Compared to ferromagnetic materials, noncollinear structures in frustrated magnets hold greater research value due to their smaller sizes and unique properties. However, an effective description of the nanoscale noncollinear domain structures in frustrated magnets is lacking.

View Article and Find Full Text PDF

In Vivo Imaging of Cobalt-Induced Ocular Toxicity in a Mouse Model.

Methods Protoc

January 2025

The Krieger Eye Research Laboratory, Bruce and Ruth Faculty of Medicine, Technion-Institute of Technology, Haifa 3525433, Israel.

Cobalt is a trace element, crucial for red blood cell formation and neurological function. Cobalt toxicity is often only diagnosed after severe manifestations, including visual impairment. We aimed to investigate whether optical coherence tomography (OCT) and magnetic resonance imaging (MRI) can effectively detect cobalt-induced ocular toxicity in a murine model.

View Article and Find Full Text PDF

The numerical analysis examines the attributes of magnetohydrodynamic natural convection in a closed cavity including a circular hollow. Because mono and hybrid nanofluids have many applications in thermal engineering and manufacturing, hybrid nanofluids are utilized as the substance within the entire domain. The investigation centers on a closed, trapezoidal-shaped hollow with a heated surface ring.

View Article and Find Full Text PDF

Observation of magnetic skyrmion lattice in CrMnGe by small-angle neutron scattering.

Sci Rep

January 2025

Helmholtz-Zentrum Berlin für Materialien und Energie, 13109, Berlin, Germany.

Incommensurate magnetic phases in chiral cubic crystals are an established source of topological spin textures such as skyrmion and hedgehog lattices, with potential applications in spintronics and information storage. We report a comprehensive small-angle neutron scattering (SANS) study on the B20-type chiral magnet Cr[Formula: see text]Mn[Formula: see text]Ge, exploring its magnetic phase diagram and confirming the stabilization of a skyrmion lattice under low magnetic fields. Our results reveal a helical ground state with a decreasing pitch from 40 to 35 nm upon cooling, and a skyrmion phase stable in applied magnetic fields of 10-30 mT, and over an unusually wide temperature range for chiral magnets of 6 K ([Formula: see text], [Formula: see text] K).

View Article and Find Full Text PDF

BTSegDiff: Brain tumor segmentation based on multimodal MRI Dynamically guided diffusion probability model.

Comput Biol Med

January 2025

School of Information Science and Engineering, Yunnan University, 650500, Kunming, China. Electronic address:

In the treatment of brain tumors, accurate diagnosis and treatment heavily rely on reliable brain tumor segmentation, where multimodal Magnetic Resonance Imaging (MRI) plays a pivotal role by providing valuable complementary information. This integration significantly enhances the performance of brain tumor segmentation. However, due to the uneven grayscale distribution, irregular shapes, and significant size variations in brain tumor images, this task remains highly challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!